摘要:
The invention relates to a stratified material with a coating which is deposited on one side or both sides and which is comprised of a planar substrate containing acrylate. The synthetic resin is modified by means of high-temperature resistant, polymerizable nanoparticles having a glass transition temperature of the homopolymerizates ≧150 ° C. Said nanoparticles comprise a core consisting of silicon dioxide and of at least one side chain which is covalently bound to the core via one or several oxygen atoms of the oxide, and which is of the formula (MeO)x(Me—(CH2)n—(OCO)m—CR1═CH2)y, wherein Me represents Si or Al, x is 1 to 3, m is 0 and 1, n is 0 to 6, y is 1 to 3 and R represents H or CH3, whereby the free valences of Me represent a binding to another oxygen atom of the core or are saturated by alkoxy radicals.
摘要:
High-temperature resistant polymerizable metal oxide particles having a glass transition temperature of the homopolymerizable ≧100° C. and a core A. The core includes an oxide of a metal or semimetal of the third to sixth main group, of the first to eighth subgroup of the periodic table, or of the lanthanides, and has at least one group —(B)w—X bound via the oxygen atom of the oxide or hydroxide, in which B represents a binding link, and X represents a reactive functional group, and w is equal to 0 or 1. The inventive particles are useful, in particular, for producing coating materials, molding materials and adhesives.
摘要:
The invention relates to a device to irradiate surfaces with electrons, especially to harden surface layers. The device includes a vacuum chamber that has an electron beam window; an electron beam-permeable film that closes off the vacuum chamber from the ambient medium; and an electron beam generating system, consisting of a cathode and a forming electrode which are connected to a high-voltage and beam current feed line. In order to achieve an increase of the electron beam power and to reduce the energy losses during the transfer out of the electron beam window in such a device, according to the invention, the forming electrode is designed as a tubular hollow body with inner hollow space lengthwise dividers and with a lengthwise slit that is open towards the electron beam window. A wire-shaped cathode is arranged in each hollow space segment divided off by the hollow space lengthwise divider.
摘要:
The invention relates to a method and an apparatus for individually detecting in ambient air a predetermined gaseous warfare agent, namely a poison gas of the class of organic sulfuric or phosphorous substances, and a predetermined interfering compound, e.g. another poison gas. First, light O.sub.2 reaction ions are generated from water and are added in a measuring chamber to a mixture of the agent and the ambient air. As a result, the O.sub.2 reaction ions will deposit on the heavy molecules of the agent in a spatially non-uniform distribution to generate quasi-molecular ions. An electrical field alternating about a zero line and having a predetermined basic frequency and an amplitude is generated within the measuring chamber. The resulting quasi-molecular ion current is measured and resulting current signals are processed. For distinguishing the agent from the interfering compound, an initial experiment is made for a standardized measuring chamber. During the initial experiment, the quasi-molecular current is determined as a function of the basic frequency, of the amplitude and of a plurality of asymmetries of the electrical field variation relative to the zero line. Each current determination is carried out separately for the agent and for the interfering compound. Then a first measurement on the mixture of ambient air, agent and interfering compound is made with a first one of the asymmetries and, subsequently, a second measurement on the mixture is made with a second one of the asymmetries. The measured signals of these two measurements are logically combined to extract an output signal indicative of the presence of the agent and of the interfering compound within the ambient air.