摘要:
Compound preforms are provided having a first region, including a porous ceramic and a second region including a porous or solid ceramic in which the two regions differ in composition. The compound preform is infiltrated with a liquid metal which is then solidified to form a metal matrix composite.
摘要:
Compound preforms are provided having a first region, including a porous ceramic and a second region including a porous or solid ceramic in which the two regions differ in composition. The compound preform is infiltrated with a liquid metal which is then solidified to form a metal matrix composite.
摘要:
The specification and drawings describe and show an embodiment of and method of forming a liquid flow through heat exchanger structure cast in a metal matrix composite. The composite comprises a preform reinforcement material infiltrated with molten metal. The composite reinforcement material is injection molded around the heat exchanger structure allowing for intimate contact between the composite and structure. The composite formed has a specific coefficient of thermal expansion to match an active heat-generating device mounted thereon. The present invention allows for enhanced thermal and mechanical properties by eliminating voids or gaps at the composite to heat exchanger structure interface, these voids or gaps being present in prior art fabrication methods or induced by usage due to thermal cycling of prior art composites. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
摘要:
The specification and drawings describe and show an embodiment of and method of forming a liquid flow through heat exchanger structure cast in a metal matrix composite. The composite comprises a preform reinforcement material infiltrated with molten metal. The composite reinforcement material is injection molded around the heat exchanger structure allowing for intimate contact between the composite and structure. The composite formed has a specific coefficient of thermal expansion to match active heat-generating device(s) mounted thereon. The present invention allows for enhanced thermal and mechanical properties by eliminating voids or gaps at the composite to heat exchanger structure interface, these voids or gaps being present in prior art fabrication methods or induced by usage due to thermal cycling of prior art composites.
摘要:
A lightweight armor system may comprise multiple reinforcement materials layered within a single metal matrix casting. These reinforcement materials may comprise ceramics, metals, or other composites with microstructures that may be porous, dense, fibrous or particulate. Various geometries of flat plates, and combinations of reinforcement materials may be utilized. These reinforcement materials are infiltrated with liquid metal, the liquid metal solidifies within the material layers of open porosity forming a dense hermetic metal matrix composite armor in the desired product shape geometry. The metal infiltration process allows for metal to penetrate throughout the overall structure extending from one layer to the next, thereby binding the layers together and integrating the structure.
摘要:
A lightweight armor system may comprise multiple reinforcement materials layered within a single metal matrix casting. These reinforcement materials may comprise ceramics, metals, or other composites with microstructures that may be porous, dense, fibrous or particulate. Various geometries of flat plates, and combinations of reinforcement materials may be utilized. These reinforcement materials are infiltrated with liquid metal, the liquid metal solidifies within the material layers of open porosity forming a dense hermetic metal matrix composite armor in the desired product shape geometry. The metal infiltration process allows for metal to penetrate throughout the overall structure extending from one layer to the next, thereby binding the layers together and integrating the structure.
摘要:
A structural insert according to the present invention can be utilized in a Metal Matrix Composite (MMC) structure such as an armor structure having one or more material layers with each material layer having at least one structural insert arranged along a common surface. Utilizing a polygonal or HoneyComb Core, a reinforcement material containing a fraction of high volume hollow microspheres with interior voids can be utilized and placed within the inserts cellular structure to decrease the weight of the armor system. Subsequent to metal infiltration, the metal encapsulates the micro-spheres within the cells of the cellular structure, forming pockets of micro-spheres therein. These encapsulated hollow microspheres comprise a ceramic or glass wall around an interior void having a wall thickness that reinforces the void wall surface. The encapsulating metal further bonds to the walls of the cellular structure increasing the crush strength of the cell wall. In one embodiment, having the entire cellular structure filled with micro-spheres, the combination of microsphere diameter, face-sheet type and thickness, and core thickness, combined with the increased bonding effect of the encapsulated spheres to the cell walls, has demonstrated superior energy absorption characteristics.
摘要:
A hydrogen storage and recovery system includes a substrate having embedded hydrogen molecules and a grid of cells. Each cell includes an electron source for directing electrons onto the substrate, two orthogonal magnetic or electric fields that are oriented so that the electrons pass through both magnetic fields prior to striking the substrate, and an ion guide. A voltage source establishes a potential for the electrons that is equal to the ionization potential of the hydrogen molecules, so that hydrogen molecules are ionized when the electrons impinge on the substrate. The magnetic fields can be manipulated to deflect, or change, the direction of said electrons passing through the fields, so that electrons strike the substrate at different locations, which allows for more recovery of the embedded hydrogen molecules from the substrate. The ion guide uses an applied electric field to draw hydrogen ions that have been ionized for subsequent storage.
摘要:
A lightweight armor system may comprise multiple reinforcement materials layered within a single metal matrix casting. These reinforcement materials may comprise ceramics, metals, or other composites with microstructures that may be porous, dense, fibrous or particulate. Various geometries of flat plates, and combinations of reinforcement materials may be utilized. These reinforcement materials are infiltrated with liquid metal, the liquid metal solidifies within the material layers of open porosity forming a dense hermetic metal matrix composite armor in the desired product shape geometry. The metal infiltration process allows for metal to penetrate throughout the overall structure extending from one layer to the next, thereby binding the layers together and integrating the structure.
摘要:
An apparatus according to embodiments of the present invention includes a socket having at least three ball support points to constrain a ball, and a yoke rotatably coupled to the socket, the yoke having an axis of rotation that intersects the ball when the ball is positioned in the socket, the yoke rotatable to a closed position in which the yoke captures the ball in the socket, and the yoke rotatable to an open position in which the yoke does not capture the ball in the socket. According to some embodiments, the yoke is biased in the closed position such as, for example, by a spring. The yoke may be rotationally coupled to the socket at one or more locations, and the axis of rotation may intersect the ball when the ball is in the socket either through the center of the ball or at an off-center location.