摘要:
A method and device for measuring the current in a conductor are presented. They utilize the Faraday effect on counter-propagating circularly polarized beams of light in a fiber optic coil. The light beams are transformed to and from circular polarization by a polarization transformer comprised of a birefringent fiber with a twist through an appropriate angle at an appropriate distance from one end.
摘要:
A method for incorporating an optical material into an optical fiber and optical devices utilizing the method are disclosed. Fiber material may be removed from the optical fiber to expose the fiber core and the core may then be at least partially removed. The optical material may then be incorporated into the core area to replace the removed core. Cladding material may then be deposited over the optical material and an electrode may be fixed to the cladding over the optical material to form an optical device.
摘要:
A reduced minimum configuration (RMC) fiber optic current sensor (FOCS) is proposed which includes a sensing coil or sensing region, a light source and an optical path arranged between the front output of the light source and the fiber optic sensing coil/region. At least one quarter wave plate is disposed between the optical path and the sensing coil/region for converting linearly polarized light beams into circularly polarized light beams propagating through the sensing coil/region. The circularly polarized light beams propagating though the sensing region experience a differential phase shift caused by a magnetic field or current flowing in a conductor proximate to the sensing coil. A light detector is located at the back output of the light source and produces an output signal in response to return light intensity transmitted through the light source. The return light intensity is a measure of the magnetic field in the sensor coil/region. The magnetic field may be produced by an electric current flowing through a wire, wherein the sensor coil can be wound around the wire. Electronics is described which minimizes effects caused by changes in the environmental conditions.
摘要:
A fiber optic doppler anemometer comprises a source of coherent light, a directional coupler formed by the combination of a pair of single-mode optical fibers, and a photoelectric transducer. The first end of the first fiber receives an incident beam of light from the source and guides it through the directional coupler to the second end of the first fiber, which is located adjacent to a body of moving particles to be measured, where both the second end of the first fiber and the moving particles reflect a portion of the incident light back into the first fiber. The reflected light, which has a frequency different from that of the incident beam entering the first fiber, is directed back through the directional coupler which couples a portion of the reflected light toward the first end of the second fiber. The photoelectric transducer receives the light emerging at the first end of the second fiber and converts it into analogous electrical signals.This system may be used as a velocimeter using the Doppler effect to measure the velocity of moving particles and to measure the sizes of particles with Brownian motion.
摘要:
A continuously drawn optical fiber comprising a core and cladding having different refractive indices and forming a single-mode guiding region, and the outer surface of the fiber having a cross-section forming a pair of orthogonal exterior flat surfaces so that the location of the guiding region can be ascertained from the exterior geometry of the fiber, the guiding region being offset from the center of gravity of the transverse cross-section of the fiber and located sufficiently close to at least one of the flat surfaces to allow coupling to a guided wave through that surface by exposure or expansion of the field of the guiding region.
摘要:
A system and a method for controlling the scale factor of a fiber optic sensor are disclosed. The scale factor may be maintained at a constant level by controlling the power level of the light source based on the amplitude of a modulation superimposed on the modulator drive signal. Alternatively, scale factor may be maintained at a constant level by setting the detected signal at twice the modulator drive frequency to zero.
摘要:
A method for fabricating a transformer of linearly polarized light to elliptically polarized light is presented. The method involves twisting a birefringent fiber through angles that depend on the polarization desired. This technique obviates the need to splice fibers, as in common approaches. In the final step of the method, the polarization can be fine tuned by heating the fiber to cause the core of the fiber to diffuse into the cladding. Also, methods and systems are presented to transform substantially polarized light to substantially randomly polarized light.
摘要:
A method for fabricating a transformer of linearly polarized light to elliptically polarized light is presented. The method involves twisting a birefringent fiber through angles that depend on the polarization desired. This technique obviates the need to splice fibers, as in common approaches. In the final step of the method, the polarization can be fine tuned by heating the fiber to cause the core of the fiber to diffuse into the cladding. Using this transformer of polarized light, a current sensor is presented that exploits the Faraday Effect in a Sagnac interferometer.
摘要:
A method of forming an optical fiber joint between a pair of elongated optical fibers each of which has a longitudinal axis surrounded by a core and cladding having different refractive indices and forming a single-mode light-guiding region, the core and cladding of each fiber having non-circular transverse cross-sections defining two polarization-maintaining axes of birefringence transverse to the longitudinal axis of the fiber. Each of the fibers also has predetermined external flat reference surfaces for locating the core and cladding and the axes of birefringence within each fiber from the exterior geometry of the fiber. The method comprises shaping an elongated glass preform to have a cross-sectional configuration with flat longitudinal surfaces extending along the preform length, which flat surfaces are large-scale complements of the external reference surfaces on the fibers to be joined, such that the preform longitudinal surfaces will mate with the fiber reference surfaces when the preform is drawn down to the scale of the fibers; heating the shaped preform to a softened condition and then drawing the softened preform in a longitudinal direction to reduce the scale of the complementary surfaces so that the cross-sectional configuration of the drawn preform matches the cross-sectional configuration of the external reference surfaces on the fibers to be joined, and so that the preform longitudinal surfaces and the fiber reference surfaces will mate together; cooling the drawn preform and placing the optical fibers to be joined thereon with the ends of the fibers butted together, with the external reference surfaces on the fibers matingly engaging the complementary longitudinal surfaces on the drawn preform; and bonding the fibers to the drawn preform and bonding the abutting ends of the fibers to each other.
摘要:
A fiber-optic polarizer comprising the combination of an optical fiber having a polarization-holding core and cladding with different refractive indices and forming a single-mode guiding region, the guiding region being offset from the center of gravity of the fiber section and located sufficiently close to the surface of one side of the fiber, along a selected length of the fiber, to expose the evanescent field of the guiding region at the surface of the one side to allow coupling to a contiguous medium, the outer surface of the fiber having a non-circular cross-section with a predetermined geometric relationship to the guiding region and a pair of orthogonal polarization axes therein so that the location of the guiding region and the orientation of the axes can be ascertained from the geometry of the outer surface, and a coating of indium on at least the one side of the fiber where the evanescent field is exposed so that light waves having undesired polarizations are attenuated by the indium coating.