Abstract:
The present invention discloses a backlight control circuit with flexible configuration, comprising: a light emitting device path; a current source for controlling the current amount on the light emitting device path, the current source receiving a relatively high reference voltage in a first state, and receiving a relatively low reference voltage in a second state; and a current source control circuit for controlling the current source, whereby when the light emitting device path is in normal use, the current source is set to the first state, and when the light emitting device path is not in normal use, the current source is set to the second state.
Abstract:
Alight emitting device current regulator circuit is disclosed. A light emitting device circuit has a first end for receiving light emitting device operation power, and a second end. The light emitting device current regulator circuit includes: an internal voltage generation circuit coupled to the second end, for generating an internal voltage according to a second end voltage to supply electrical power to the light emitting device current regulator circuit, wherein the supply voltage generation circuit includes a charge storage device for storing charges from the second end voltage to generate the supply voltage; and a current control circuit coupled to the second end, the current control circuit regulating the light emitting device current according to a control signal, wherein the control signal at least intermittently reduces the light emitting device current to zero or low current in order to raise the second end voltage.
Abstract:
The present invention discloses a backlight control circuit, comprising: a voltage supply circuit for receiving an input voltage and generating an output voltage under control by a control signal; at least one voltage comparison path respectively coupled to at least one light emission device path; a voltage operative amplifier circuit for generating the control signal according to a lowest voltage on the at least one voltage comparison path; and at least one under current detection circuit for detecting whether a corresponding one of the at least one light emission device path is in an under current status, whereby when anyone of the under current detection circuits detects the under current status, it sends an exclusion signal excluding a corresponding one of the at least one voltage comparison path from being an effective input of the voltage operative amplifier.
Abstract:
A charger circuit converts a supply voltage of a DC power supply to a charging voltage and a charging current to charge a battery. A battery charging method includes: setting the supply voltage to an initial voltage; checking whether the charging voltage reaches a predetermined voltage level; when the charging voltage is lower than the predetermined voltage level, delivering a control signal to the DC power supply to reduce the supply voltage; when the charging voltage or the charging current is reduced accordingly, delivering the control signal to the DC power to increase the supply voltage; and repetitively reducing and/or increasing the supply voltage until the charging voltage reaches the predetermined voltage level.
Abstract:
A light emitting device current regulator circuit is disclosed. A light emitting device circuit has a first end for receiving light emitting device operation power, and a second end. The light emitting device current regulator circuit includes: an internal voltage generation circuit coupled to the second end, for generating an internal voltage according to a second end voltage to supply electrical power to the light emitting device current regulator circuit, wherein the supply voltage generation circuit includes a charge storage device for storing charges from the second end voltage to generate the supply voltage; and a current control circuit coupled to the second end, the current control circuit regulating the light emitting device current according to a control signal, wherein the control signal at least intermittently reduces the light emitting device current to zero or low current in order to raise the second end voltage.
Abstract:
An adaptive buck converter of a charging cable includes: a power receiving interface for receiving a DC voltage and a cable current from a cable; a terminal communication interface for transmitting a charging voltage and a charging current to a connection terminal of the charging cable and for receiving a communication signal generated by a mobile device from the connection terminal; a power converting circuit for receiving the DC voltage and the cable current from the power receiving interface and for generating the charging voltage and the charging current; a monitor circuit arranged to operably detect the DC voltage or the cable current; and a data processing circuit configured for controlling the power converting circuit according to the communication signal. The data processing circuit further communicates with the mobile device through the terminal communication interface and the connection terminal in response to a detection result of the monitor circuit.
Abstract:
The present invention discloses a high efficiency charging system and a charging circuit therein. The high efficiency charging system includes a power supplier and a power receiver, which are connected via a transmission wire so that power is transmitted from the power supplier to the power receiver. The power receiver includes a voltage conversion circuit and a control circuit. The voltage conversion circuit converts an adjustable input voltage provided by the power supplier to an output voltage and generates an output current for charging a battery. The voltage conversion circuit adaptively adjusts the output current according to a voltage drop between the adjustable input voltage and the output voltage. The control circuit senses the adjustable input voltage and the output voltage and instructs the power supplier to adjust the output voltage according to the voltage drop between the adjustable input voltage and output voltage.
Abstract:
An adaptive buck converter of a charging cable includes: a power receiving interface for receiving a DC voltage and a cable current from a cable; a terminal communication interface for transmitting a charging voltage and a charging current to a connection terminal of the charging cable and for receiving a communication signal generated by the mobile device from the connection terminal; a power converting circuit for receiving the DC voltage and the cable current from the power receiving interface and for generating the charging voltage and the charging current, wherein the charging voltage is lower than the DC voltage while the charging current is greater than the cable current; and a data processing circuit coupled with the power converting circuit and configured for controlling the power converting circuit according to the communication signal.
Abstract:
The present invention discloses a high efficiency charging system and a charging circuit therein. The high efficiency charging system includes a power supplier and a power receiver, which are connected via a transmission wire so that power is transmitted from the power supplier to the power receiver. The power receiver includes a voltage conversion circuit and a control circuit. The voltage conversion circuit converts an adjustable input voltage provided by the power supplier to an output voltage and generates an output current for charging a battery. The voltage conversion circuit adaptively adjusts the output current according to a voltage drop between the adjustable input voltage and the output voltage. The control circuit senses the adjustable input voltage and the output voltage and instructs the power supplier to adjust the output voltage according to the voltage drop between the adjustable input voltage and output voltage.