Abstract:
A power conversion circuit includes an N-level PWM power converter and a switching capacitor power converter. The N-level PWM power converter includes shared switches shared with the switching capacitor power converter, and PWM switches. In an N-level PWM mode, the shared switches and the PWM switches periodically switch an inductor and a capacitor, to execute power conversion between a first power and a second power by N-level PWM switching operation. The switching capacitor power converter includes the shared switches and auxiliary switches. In a capacitive conversion mode, the shared switches and the auxiliary switches periodically switch the capacitor, to execute power conversion between the first power and the second power by capacitive power conversion operation. In the capacitive conversion mode, a portion of the plural PWM switches are always OFF such that one end of the inductor is floating.
Abstract:
A switched capacitor converter includes plural switch units. The switch units are configured to switch a coupling relationship of a capacitor between a first power and a second power, wherein at least one of the switch units includes a switch circuit. The switch circuit includes a first switch, a second switch, and a switch driving circuit, wherein the conduction resistance of the first switch is greater than the conduction resistance of the second switch, and the parasitic capacitance of the first switch is less than the parasitic capacitance of the second switch. The switch driving circuit turns on the first switch before the second switch is turned on and/or turns off the first switch after the second switch is turned off, such that the switching loss of the switch circuit is less than a predetermined target value.
Abstract:
A switching power conversion circuit includes a conversion capacitor, a capacitive power conversion circuit, an inductor, an inductive power conversion circuit and a switching control circuit. The capacitive power conversion circuit includes plural switching devices for generating an intermediate voltage which is in a predetermined proportional relationship to the input voltage. The inductive power conversion circuit includes plural switching devices for converting the intermediate voltage to an output voltage. The plural switching devices of the capacitive power conversion circuit and the inductive power conversion circuit switch the conversion capacitor and the inductor periodically according to the duty ratio of the switching control signal generated by the switching control circuit. The capacitive power conversion circuit and the inductive power conversion circuit share one of the plural switching devices.
Abstract:
A LED driver using a PWM signal for dimming control includes a power converter and a current regulator. The power converter provides an output voltage and a load current for a plurality of LEDs. The current regulator provides a load current dependent signal for the power converter to speed up load transient response caused by variation of the load current, to reduce the ripple of the output voltage, and thereby to avoid audio noise during PWM dimming.
Abstract:
Serially connected low voltage transistors are used to replace a high voltage transistor in a voltage conversion circuit for a driver, or parallel connected sub-transistors are used to establish a high voltage transistor having an effective size dynamically adjusted according to loading of the driver, to reduce switching loss and thereby improve the efficiency of the driver.
Abstract:
A multi-mode power system includes a battery module, a first conversion circuit, and a second conversion circuit. The battery module includes a battery path switch and a battery group. The first conversion circuit includes switches and a first capacitor, wherein the switches include the battery path switch. The multi-mode power system operates in one of plural operation mode combinations, wherein when the first conversion circuit operates in a first outgoing mode or a first bypass mode, the second conversion circuit operates in a second incoming mode, a second outgoing mode, or a second bypass mode; when the first conversion circuit operates in a first incoming mode, the second conversion circuit operates in the second incoming mode or the second bypass mode.
Abstract:
A power conversion circuit includes an N-level PWM power converter and a switching capacitor power converter. The N-level PWM power converter includes shared switches shared with the switching capacitor power converter, and PWM switches. In an N-level PWM mode, the shared switches and the PWM switches periodically switch an inductor and a capacitor, to execute power conversion between a first power and a second power by N-level PWM switching operation. The switching capacitor power converter includes the shared switches and auxiliary switches. In a capacitive conversion mode, the shared switches and the auxiliary switches periodically switch the capacitor, to execute power conversion between the first power and the second power by capacitive power conversion operation. In the capacitive conversion mode, a portion of the plural PWM switches are always OFF such that one end of the inductor is floating.
Abstract:
A charger circuit which supplies a charging power to charge a battery circuit, includes: a conversion switch circuit, at least one capacitor and a conversion control circuit. The conversion switch circuit is coupled between a charging power and a ground level and includes conversion switches connected in series. The conversion switch circuit has battery voltage balancing nodes electrically connected to the battery circuit, such that each battery is electrically connected between two of the battery voltage balancing nodes. The conversion control circuit is coupled to the conversion switch circuit and provides operation signals to the conversion switch circuit, to respectively control the corresponding conversion switches, so that the capacitor is periodically connected in parallel to each battery of the battery circuit, thereby balancing the battery voltages of the batteries.
Abstract:
A switching power conversion circuit includes a conversion capacitor, a capacitive power conversion circuit, an inductor, an inductive power conversion circuit and a switching control circuit. The capacitive power conversion circuit includes plural switching devices for generating an intermediate voltage which is in a predetermined proportional relationship to the input voltage. The inductive power conversion circuit includes plural switching devices for converting the intermediate voltage to an output voltage. The plural switching devices of the capacitive power conversion circuit and the inductive power conversion circuit switch the conversion capacitor and the inductor periodically according to the duty ratio of the switching control signal generated by the switching control circuit. The capacitive power conversion circuit and the inductive power conversion circuit share one of the plural switching devices.
Abstract:
A charger circuit for providing a charging current and voltage to a battery includes a power delivery unit, a capacitive power conversion circuit and a reverse blocking switch circuit. The power delivery unit converts an input power to a DC voltage and current. The capacitive power conversion circuit includes a conversion switch circuit including plural conversion switches coupled with one or more conversion capacitors, and a conversion control circuit. The DC current is regulated to a predetermined DC current level, and the conversion control circuit controls the connections of the plural conversion capacitors such that the charging current is scaled-up of the predetermined DC current level substantially by a current scale-up factor. The reverse blocking switch circuit is coupled in series with the capacitive power conversion circuit. The body diode of the reverse blocking switch is reversely coupled to the body diode of the conversion switch.