Abstract:
A power conversion circuit includes an N-level PWM power converter and a switching capacitor power converter. The N-level PWM power converter includes shared switches shared with the switching capacitor power converter, and PWM switches. In an N-level PWM mode, the shared switches and the PWM switches periodically switch an inductor and a capacitor, to execute power conversion between a first power and a second power by N-level PWM switching operation. The switching capacitor power converter includes the shared switches and auxiliary switches. In a capacitive conversion mode, the shared switches and the auxiliary switches periodically switch the capacitor, to execute power conversion between the first power and the second power by capacitive power conversion operation. In the capacitive conversion mode, a portion of the plural PWM switches are always OFF such that one end of the inductor is floating.
Abstract:
A multi-level switching power converter includes a multi-level power stage circuit which converts an input power to an output power. The power stage circuit includes an inductor, a conversion capacitor and plural power switches. The controller circuit controls the multi-level power stage circuit and includes: a feedback pulse generator circuit which generates a trigger pulse; a first timer circuit and a second timer circuit which determine a first time period and a second time period respectively according to the trigger pulse; and an adjusting circuit which adjusts the first time period according to a difference between the voltage across the conversion capacitor and a reference voltage such that an average of the voltage across the conversion capacitor is substantially equal to a level of the reference voltage.
Abstract:
A charger circuit for providing a charging power to a battery includes a power delivery unit and a power conversion circuit. The power conversion circuit includes at least one conversion switch coupled to an inductor, a front stage switch conducting a DC power generated by the power delivery unit to generate a mid-stage power, and a direct charging switch. In a switching charging mode, the conversion switch converts the mid-stage power to the charging current onto a charging node. In a direct charging mode, the power delivery unit regulates the DC current, and the front stage switch and the direct charging switch conduct the DC current onto the charging node. The body diodes of the front stage switch and the direct charging switch are reversely coupled, and the body diodes of the front stage switch and the conversion switch are reversely coupled, for blocking the parasitic body current.
Abstract:
A power conversion system includes: first and second switches, a switching power converter, a battery switch and a conversion control circuit. In an external power mode, the first and second switches are controlled to generate an intermediate power from a first power and generate a second power from the intermediate power for powering an external load. In a battery power mode, the conversion control circuit controls the battery switch, the switching power converter and the second switch to generate a system power from a battery power, convert the system power to generate the intermediate power and generate the second power from the intermediate power. In the external power mode, the switching power converter is controlled to enter the battery power mode when the intermediate voltage is reduced to a transient state threshold, wherein a minimum voltage level of the intermediate power is close to a minimum voltage regulation level.
Abstract:
A control circuit for controlling a power supply circuit to provide power to a system device which includes a communication circuit includes: a pulse width modulation (PWM) controller configured to switch a transformer of the power supply circuit to generate a first output voltage; and a switched capacitor converter configured to generate a second output voltage according to the first output voltage. The second output voltage provides power to the communication circuit, wherein the communication circuit generates a power saving signal to control the PWM controller and the switched capacitor converter. When the power saving signal is enabled, the first output voltage is decreased and a duty ratio of the switched capacitor converter is increased.
Abstract:
A light emitting device driver circuit includes: a power conversion circuit, an error amplifier circuit, a sample-and-hold circuit, a load current generation circuit and a feed-forward capacitor. When the light emitting device driver circuit is in a disable phase, the sample-and-hold circuit connects a feedback signal with a second reference voltage and the sample-and-hold circuit disconnects the feedback signal from a load node, whereby the feed-forward capacitor samples a sample voltage and holds it after the disable phase transits to an enable phase. In the enable phase, the sample-and-hold circuit disconnects the feedback signal from the second reference voltage and the sample-and-hold circuit connects the feedback signal with the load node, so that during a predetermined period following the transition, there is a sufficient difference between two input terminals of the error amplifier circuit so that the load current is raised to a desired current level within the predetermined period.
Abstract:
A light emitting device driver circuit includes: a power conversion circuit, an error amplifier circuit, a sample-and-hold circuit, a load current generation circuit and a feed-forward capacitor. When the light emitting device driver circuit is in a disable phase, the sample-and-hold circuit connects a feedback signal with a second reference voltage and the sample-and-hold circuit disconnects the feedback signal from a load node, whereby the feed-forward capacitor samples a sample voltage and holds it after the disable phase transits to an enable phase. In the enable phase, the sample-and-hold circuit disconnects the feedback signal from the second reference voltage and the sample-and-hold circuit connects the feedback signal with the load node, so that during a predetermined period following the transition, there is a sufficient difference between two input terminals of the error amplifier circuit so that the load current is raised to a desired current level within the predetermined period.
Abstract:
A capacitive power converter circuit converts a DC power from a bus node to a charging power for charging a battery in a charging mode, and converts a battery voltage to a supply voltage through the bus node in a supply mode. The capacitive power converter circuit includes a conversion switch circuit including plural conversion switches configured to be operably coupled to one or more conversion capacitors, and a conversion control circuit for controlling the plural conversion switches. In the charging mode, the plural conversion switches control the conversion capacitors such that the charging current is scaled-up, and in the supply mode, the plural conversion switches control the conversion capacitors such that the supply voltage is scaled-up.
Abstract:
A control circuit of a power converter includes: a zero current detection circuit for detecting a current flowing between an inductor and a voltage output terminal of the power converter to generate a zero current detection signal; an adjusting circuit for generating an adjustment signal according to the zero current detection signal; a clock signal generating circuit for adjusting a frequency of a clock signal according to the adjustment signal; a periodical signal generating circuit for generating a periodical signal according to the clock signal; an error detection circuit for generating an error signal; and a control signal generating circuit for generating a control signal to control operations of a power switch. If the and amount of pulses generated by the zero current detection circuit satisfy a predetermined condition, the adjusting circuit switches the power converter's operation mode from DCM to CCM.
Abstract:
A charger circuit includes a power stage circuit operating at least one power switch according to an operating signal to convert an input power into an output power to charge a battery and/or to provide the output power to a load, wherein the output power includes a charging power and/or a load power; a control generating the operating signal according to a voltage amplifying signal; and a voltage error amplifier circuit comparing a voltage sensing signal relevant to a charging voltage of the charging power or a load voltage of the load power with a voltage reference level in a voltage hysteresis mode of a discontinuous conduction mode, so as to generate the voltage amplifying signal; wherein the control circuit adjusts the charging voltage or the load voltage according to the voltage amplifying signal, so as to maintain the charging voltage or the load voltage within a predetermined range.