Abstract:
A process for the direct synthesis of urea from ammonia and carbon dioxide with increased corrosion resistance, comprising, in the high-pressure synthesis section, a reaction step in a vertical reactor fed with at least one stream of fresh carbon dioxide containing a passivating agent and a decomposition-stripping step of the non-converted reagents, wherein the gas-liquid mixture collected at the head of the reactor is separated into a gaseous stream and a liquid stream fed to the tail and head of the stripper, respectively.
Abstract:
The present invention relates to a method for contemporaneously recovering ammonia and carbon dioxide from an aqueous solution thereof, possibly comprising their condensates, in a synthesis process of urea, characterized in that it comprises a hydrophobic microporous membrane distillation phase of an aqueous solution comprising ammonia, carbon dioxide and their saline compounds or condensates, said distillation being carried out at a temperature ranging from 50 to 250° C. and a pressure ranging from 50 KPa to 20 MPa absolute, with the formation of a residual aqueous solution, possibly comprising urea, and a gaseous permeate stream, comprising ammonia, carbon dioxide and water. The present invention also relates to an apparatus for effecting the above method and a production process of urea which comprises the above method.
Abstract:
A process for the direct synthesis of urea from ammonia and carbon dioxide with increased corrosion resistance, comprising, in the high-pressure synthesis section, a reaction step in a vertical reactor fed with at least one stream of fresh carbon dioxide containing a passivating agent and a decomposition-stripping step of the non-converted reagents, wherein the gas-liquid mixture collected at the head of the reactor is separated into a gaseous stream and a liquid stream fed to the tail and head of the stripper, respectively.
Abstract:
A process for the direct synthesis of urea from ammonia and carbon dioxide at high pressures and temperatures, with the formation of ammonium carbamate as intermediate, comprising a decomposition step of the ammonium carbamate and stripping of the gases formed, operating substantially at the same pressure as the synthesis step, wherein the recycled liquid streams are fed, at least partially, to the same decomposition and stripping step after being preheated by heat exchange with a stream included in the high-pressure synthesis cycle.