Abstract:
A method includes: controlling a first layer of a panel so that first electrical signals generated based on the first driving signal are applied to first cells of the first layer, and light incident on the first layer is modulated into a first modulated light according to the first electrical signals; and controlling a second layer of the panel so that second electrical signals generated based on the second driving signal are applied to second cells of the second layer, and the first modulated light received from the first layer is modulated into a second modulated light according to the second electrical signals. A modulation resolution of the second modulated light output from the second layer is greater than that of the first modulated light due to at least two second cells of the second layer that modulate light modulated by one first cell of the first layer.
Abstract:
Provided are a method and an apparatus for processing an optical coherence tomographic image. The method of processing an optical coherence tomographic image includes obtaining an optical coherence tomographic image by irradiating light to an object; generating a color space map based on the obtained optical coherence tomographic image; normalizing data of the obtained optical coherence tomographic image; realigning the normalized data of the optical coherence tomographic image; performing a tone mapping on the realigned data of the optical coherence tomographic image; and generating a color image by mapping the data of the optical coherence tomographic image on which the tone mapping is performed, by using the generated color space map.
Abstract:
A method and apparatus are provided to generate tomography images that performs the method. The apparatus and method are configured to determine a basis pattern from modulated phases of incident rays from a spatial light modulator according to a pattern of arranged pixels. The apparatus and method are further configured to perform spatial shift modulation shifting an arrangement of the pixels vertically or horizontally with respect to the basis pattern to obtain shift patterns of the basis pattern. The apparatus and method are configured to generate tomography images for the basis pattern and the shift patterns using spectrum signals of rays obtained from the incident rays passing through the spatial light modulator and entering a subject. The apparatus and method are configured to select a pattern that generates a clearest tomography image of the subject based on the generated tomography images.
Abstract:
The modulator array includes a first optical modulator, which changes a shape a wavefront of an incident light into first wavefronts to modulate the incident light which passes through the first optical modulator; and a second optical modulator that changes a shape at least one of the first wavefronts into second wavefronts to modulate the light output from the first optical modulator.
Abstract:
A method of generating a tomography image includes performing a depth scan on one spot on a surface of a subject using modulated light received from a spatial light modulator, obtaining depth scan data for each of a plurality of patterns of the spatial light modulator by repeating the depth scan on the spot for each of the plurality of patterns, forming a matrix R representing a vector space based on a correlation of signal values of the depth scan data for each of the plurality of patterns, performing a matrix decomposition on the matrix R, dividing the vector space into a noise subspace and a signal subspace based on a matrix obtained by the matrix decomposition, constructing a vector space based on either one or both of components of the signal subspace and components of the noise subspace, and generating a tomography image based on the reconstructed vector space.
Abstract:
Provided is an apparatus and method for generating tomography mages, the apparatus including a detection unit configured to modulate each of incident beams into at least two basic modulated incident lights on the basis of at least a basic modulation parameter and into a target modulated incident light on the basis of a target modulation parameter, and to detect at least two basic interference signals and a target interference signal of an object; and an imaging unit configured to analyze the at least two basic interference signals to output a set target modulation parameter, to process the target interference signal as a target image of the object, and to output the target image.
Abstract:
Provided are a tomography image generating method and an apparatus for generating a tomography image. The method of generating a tomography image includes, in response to a depth scan operation performed on an object, generating a candidate tomography image by using an interference signal acquired by the performed depth scan operation, determining a pixel pattern by using the generated candidate tomography image; and when the depth scan operation performed on the object is completed, generating a final tomography image of the object by using a finally determined pixel pattern. The generating the candidate tomography image and the determining are parallel processed by at least one processor during the depth scan operation being repeatedly performed.
Abstract:
A method of generating a tomography image includes performing a depth scan on one spot on a surface of a subject using modulated light received from a spatial light modulator, obtaining depth scan data for each of a plurality of patterns of the spatial light modulator by repeating the depth scan on the spot for each of the plurality of patterns, forming a matrix R representing a vector space based on a correlation of signal values of the depth scan data for each of the plurality of patterns, performing a matrix decomposition on the matrix R, dividing the vector space into a noise subspace and a signal subspace based on a matrix obtained by the matrix decomposition, constructing a vector space based on either one or both of components of the signal subspace and components of the noise subspace, and generating a tomography image based on the reconstructed vector space.
Abstract:
A tomographic image generation apparatus includes a light source unit configured to emit light to be used for scanning an object; an optical control unit configured to control a direction of propagation of light; an optical coupler configured to divide and combine incident light; a plurality of optical systems optically connected to the optical coupler; and a modulation and correction device configured to modulate and correct the light to be used for scanning the object. The modulation and correction device may be disposed between the optical control unit and the optical coupler, or may be included in an optical system that irradiates light onto the object among the plurality of optical systems. The modulation and correction device may only modulate light that is reflected to the object.
Abstract:
A tomographic image generation apparatus includes a light source unit configured to emit light to be used for scanning an object; an optical control unit configured to control a direction of propagation of light; an optical coupler configured to divide and combine incident light; a plurality of optical systems optically connected to the optical coupler; and a modulation and correction device configured to modulate and correct the light to be used for scanning the object. The modulation and correction device may be disposed between the optical control unit and the optical coupler, or may be included in an optical system that irradiates light onto the object among the plurality of optical systems. The modulation and correction device may only modulate light that is reflected to the object.