Abstract:
A near field communication (NFC) antenna includes a first loop for receiving an electrical signal from the outside and a plurality of closed loops disposed in an inner area of the first loop. The plurality of closed loops do not overlap each other.
Abstract:
An antenna of a near field wireless communication device is provided. The antenna may include: a source coil pattern formed on one surface of a flexible printed circuit board (FPCB) and formed with a first conductive line between a first antenna port and a second antenna port; a resonance coil pattern formed with a second conductive line, which electrically separates from the source coil pattern; and a capacitor pattern electrically connected to the second conductive line, wherein one terminal of the capacitor pattern is connected to a first terminal of the second conductive line and the other terminal of the capacitor pattern is connected to a second terminal of the second conductive line through a third conductive line formed on the other surface of the FPCB.
Abstract:
Disclosed is an electronic device which includes: a metal body including a hole defined by an inner edge thereof and extending in a first direction, wherein the metal body is defined by an outer edge thereof; and a near field communication (NFC) antenna including a coil wound about a central axis and arranged near the metal body to overlap the hole in a plan view of the metal body, wherein the inner edge and the outer edge are not connected to each other and the NFC antenna is arranged at the center of the hole along a second direction perpendicular to the first direction, and wherein the NFC antenna is arranged such that four cross points at which the NFC antenna and the inner edge cross in the plan view are formed.
Abstract:
An electronic device that includes a near field communication (NFC) antenna and a mobile device is provided. The NFC antenna includes a first coil and a second coil separated from the first coil. The mobile device includes the first coil. The second coil is arranged on the outside of the mobile device.
Abstract:
Disclosed is an electronic device which includes: a metal body including a hole defined by an inner edge thereof and extending in a first direction, wherein the metal body is defined by an outer edge thereof; and a near field communication (NFC) antenna including a coil wound about a central axis and arranged near the metal body to overlap the hole in a plan view of the metal body, wherein the inner edge and the outer edge are not connected to each other and the NFC antenna is arranged at the center of the hole along a second direction perpendicular to the first direction, and wherein the NFC antenna is arranged such that four cross points at which the NFC antenna and the inner edge cross in the plan view are formed.
Abstract:
A near field communication (hereinafter, referred to as “NFC”) antenna matching network system connected to an NFC transceiver is provided. The NFC antenna matching network system includes a matching circuit connected to first and second antenna terminals and to the NFC transceiver; and a plurality of NFC antennas connected in parallel and physically with the first and second antenna terminals, wherein each of the NFC antennas comprises a source coil connected between the first antenna terminal and the second antenna terminal; and a resonance coil physically separated from the source coil.
Abstract:
At least one example embodiment provides a near field communication (NFC) antenna matching network system connected to an NFC transceiver. The NFC antenna matching network system includes a matching circuit connected to first and second antenna terminals and to the NFC transceiver. The matching circuit is configured to match impedances of the NFC antenna network matching system and the NFC transceiver. The NFC antenna matching network system includes a plurality of NFC antennas connected in parallel with the first and second antenna terminals. Each of the NFC antennas includes a source coil and a resonance coil. The source coil is connected between the first antenna terminal and the second antenna terminal. The resonance coil is physically separated from the source coil and configured to exchange signals with the source coil via inductive coupling.