Abstract:
A highly safe power storage system is provided. If n (n is an integer over or equal to three) secondary batteries are used in a vehicle such as an electric vehicle, a circuit configuration is used with which the condition of each secondary battery is monitored using an anomaly detection unit; and if an anomaly such as a micro-short circuit is detected, only the detected anomalous secondary battery is electrically separated from the charging system or the discharging system. At least one microcomputer monitors anomalies in n secondary batteries consecutively, selects the anomalous secondary battery or the detected secondary battery which causes an anomaly, and gives an instruction to bypass the secondary battery with each switch.
Abstract:
It is difficult to know the remaining amount and the degradation state of a power storage device, and it is also difficult to estimate how long the power storage device can be used. Data obtained through midway discharge and mid-to-full charge is used as the learning data to calculate the degradation state and the capacity. In other words, the learning data includes both a discharge curve of midway discharge and a charge curve of mid-to-full charge, and neural network processing is performed with the use of the learned data.
Abstract:
Deterioration of a storage battery included in an electronic device is reduced. Power consumption of an electronic device is reduced. A power feeding device having excellent performance is provided. The power feeding device includes a power feeding coil, a control circuit, and a neural network and has a function of charging a storage battery with a wireless signal supplied by the power feeding coil. The control circuit has a function of estimating a remaining capacity value of the storage battery, the control circuit has a function of supplying the estimated remaining capacity value to the neural network, the neural network outputs a value corresponding to the supplied remaining capacity value to the control circuit, the control circuit determines a charge condition for the storage battery on the basis of the value output by the neural network, and the power feeding device has a function of charging the storage batten under the determined charge condition.
Abstract:
A display device whose aspect ratio can be changed is provided. The display device includes a plurality of display units and a plurality of driver circuit units. The plurality of display units each include a light-emitting portion and a connection region. The plurality of driver circuit units each include a driver circuit portion and a connection region. The connection regions of the adjacent units overlap with each other and one shaft passes through the connection regions. The adjacent units are electrically connected to each other with the one shaft. With such a structure, an angle between the adjacent units electrically connected to each other with one shaft can be changed, which enables the aspect ratio of the display device to be changed.
Abstract:
A highly reliable light-emitting device and a manufacturing method thereof are provided. A light-emitting element and a terminal electrode are formed over an element formation substrate; a first substrate having an opening is formed over the light-emitting element and the terminal electrode with a bonding layer provided therebetween; an embedded layer is formed in the opening; a transfer substrate is formed over the first substrate and the embedded layer; the element formation substrate is separated; a second substrate is formed under the light-emitting element and the terminal electrode; and the transfer substrate and the embedded layer are removed. In addition, an anisotropic conductive connection layer is formed in the opening, and an electrode is formed over the anisotropic conductive connection layer. The terminal electrode and the electrode are electrically connected to each other through the anisotropic conductive connection layer.
Abstract:
A display device, an electronic device, or a lighting device that is unlikely to be broken is provided. A flexible first substrate and a flexible second substrate overlap with each other with a display element provided therebetween. A flexible third substrate is bonded on the outer surface of the first substrate, and a flexible fourth substrate is bonded on the outer surface of the second substrate. The third substrate is formed using a material softer than the first substrate, and the fourth substrate is formed using a material softer than the second substrate.
Abstract:
A method and an apparatus for manufacturing an object which involve a separation technique are provided. A first substrate provided with an object is attached to a second substrate and is then suction-fixed by using a suction chuck (also referred to as a suction stage or a vacuum chuck) including portions with different suction capabilities or by using its functional equivalent, and the second substrate is separated from the first substrate. Accordingly, the object is separated from the first substrate and transferred to the second substrate. An apparatus for achieving this is also provided. A substrate fixture surface of the suction chuck or its functional equivalent includes a plurality of portions provided with suction micro-holes and a portion provided with no holes. Owing to the plurality of portions provided with suction micro-holes, a plurality of objects can be transferred from the first substrate to the second substrate.
Abstract:
A novel functional panel is provided. The functional panel includes a first substrate, a second substrate, a first layer, a second layer, a sealing portion, and a first adhesive layer. The sealing portion is between the first layer and the second layer. The first adhesive layer is between the first layer and the first substrate. The second substrate is in contact with the second layer. When a surface of the first layer which faces the first substrate is referred to as a first surface and a surface of the second layer which is in contact with the second substrate is referred to as a second surface, the functional panel has a plurality of regions having different distances between the first surface and the second surface.
Abstract:
A highly reliable light-emitting device is provided. A yield in a manufacturing process of a light-emitting device is increased. A light-emitting device is provided in which a non-light-emitting portion having a frame-like shape outside a light-emitting portion includes a portion thinner than the light-emitting portion. A light-emitting element and a bonding layer are formed over a substrate. The light-emitting element is sealed by overlapping a pair of substrates and curing the bonding layer. Then, while the cured bonding layer is heated, pressure is applied to at least a portion of the non-light-emitting portion with a member having a projection.
Abstract:
A light-emitting device or a display device that is less likely to be broken is provided. Provided is a light-emitting device including an element layer and a substrate over the element layer. At least a part of the substrate is bent to the element layer side. The substrate has a light-transmitting property and a refractive index that is higher than that of the air. The element layer includes a light-emitting element that emits light toward the substrate side. Alternatively, provided is a light-emitting device including an element layer and a substrate covering a top surface and at least one side surface of the element layer. The substrate has a light-transmitting property and a refractive index that is higher than that of the air. The element layer includes a light-emitting element that emits light toward the substrate side.