Secondary battery and electronic device including the same

    公开(公告)号:US10122010B2

    公开(公告)日:2018-11-06

    申请号:US14751443

    申请日:2015-06-26

    Abstract: An electronic device having a novel structure, specifically, an electronic device having a novel structure that can be changed into various appearances is provided. Specifically, after an active material layer is formed on one or both surfaces of a current collector, the active material layer in a bent region is partly removed. The removed region of the active material layer can be in a linear shape, a dot shape, or a matrix shape, for example. After the active material layer is formed on one or both surfaces of the current collector, laser processing for removing part of the active material layer in an irradiation region is performed using laser light or the like. On the region where the surface of the current collector is exposed, the active material layer is not provided, and this region is a region that does not function as a battery. Owing to this region, a secondary battery with a wide movable region can be achieved.

    Power storage device and electronic device

    公开(公告)号:US11239516B2

    公开(公告)日:2022-02-01

    申请号:US16353414

    申请日:2019-03-14

    Abstract: To improve the flexibility of a power storage device, or provide a high-capacity power storage device. The power storage device includes a positive electrode, a negative electrode, an exterior body, and an electrolyte. The outer periphery of each of the positive electrode active material layer and the negative electrode active material layer is a closed curve. The exterior body includes a film and a thermocompression-bonded region. The inner periphery of the thermocompression-bonded region is a closed curve. The electrolyte, the positive electrode active material layer, and the negative electrode active material layer are in a region surrounded by the thermocompression-bonded region.

    Power storage device, battery management unit, and electronic device

    公开(公告)号:US10686167B2

    公开(公告)日:2020-06-16

    申请号:US15215621

    申请日:2016-07-21

    Abstract: A repeatedly bendable power storage device. A highly reliable power storage device. A long-life power storage device. A repeatedly bendable electronic device. A flexible electronic device. The power storage device includes a film, a positive electrode, and a negative electrode. The film includes a plurality of projections. A difference between the maximum height and the minimum height of a surface of the film is greater than or equal to 0.15 mm and less than 0.8 mm. The modulus of rigidity of the film is less than 6.5×109 N. The film includes a metal layer. The thickness of the metal layer is greater than or equal to 5 μm and less than or equal to 200 μm. The positive electrode and the negative electrode are surrounded by the film.

    Power storage device, battery management unit, and electronic device

    公开(公告)号:US11380951B2

    公开(公告)日:2022-07-05

    申请号:US16890049

    申请日:2020-06-02

    Abstract: A repeatedly bendable power storage device. A highly reliable power storage device. A long-life power storage device. A repeatedly bendable electronic device. A flexible electronic device. The power storage device includes a film, a positive electrode, and a negative electrode. The film includes a plurality of projections. A difference between the maximum height and the minimum height of a surface of the film is greater than or equal to 0.15 mm and less than 0.8 mm. The modulus of rigidity of the film is less than 6.5×109 N. The film includes a metal layer. The thickness of the metal layer is greater than or equal to 5 μm and less than or equal to 200 μm. The positive electrode and the negative electrode are surrounded by the film.

    Power storage device and manufacturing method thereof

    公开(公告)号:US11355784B2

    公开(公告)日:2022-06-07

    申请号:US16662083

    申请日:2019-10-24

    Abstract: In initial charge and discharge, decomposition products or a gas is generated, degrading a battery. At least one of solvents (e.g., ethylene carbonate) used for an electrolytic solution is brought into contact with a positive electrode and a negative electrode and then charge is performed to some degree, and after that, a different solvent or electrolytic solution (e.g., ethyl methyl carbonate or vinylene carbonate) was added to adjust the electrolytic solution and then charge is performed. Through this process, stable coating films are formed in initial charge and discharge, which stably inhibits a side reaction between the electrolytic solution and an active material.

Patent Agency Ranking