Abstract:
A rock breaking seismic source and active source three-dimensional seismic combined detection system uses a tunnel boring machine for three-dimensional seismic combined detection by active seismic source and rock breaking seismic source methods. Long-distance advanced prediction and position recognition of a geological anomalous body are realized using the active source seismic method. Machine construction is adjusted and optimized according to the detection result; real-time short-distance accurate prediction of the body is realized using the cutter head rock breaking vibration having weak energy but containing a high proportion of transverse wave components as seismic sources and adopting an unconventional rock breaking seismic source seism recording and handling method. An area surrounding rock quality to be excavated is represented and assessed. A comprehensive judgment is made to the geological condition in front of the working face with the results of active source and rock breaking seismic source three-dimensional seismic advanced detection.
Abstract:
A method and system for advanced detection and optimization of tunnel resistivity based on depth resolution. The method includes integrating all acquired electrode measurement data into comprehensive set, calculating its model resolution matrix, and selecting plurality of electrode measurement data from comprehensive set to form initial set; adding measurement data of electrodes that are not in initial set to initial set to form plurality of temporary subsets; calculating depth resolution balance goodness function of temporary subset according to model resolution matrix, selecting temporary subset with optimal value of depth resolution balance goodness function as new initial set, and determining whether average relative model resolution of initial set meets optimization requirements; if requirements are not met, continuously updating temporary subset, otherwise outputting initial set; determining number and position of tunnel face measurement electrodes according to updated initial set, and obtaining effective observation mode of advanced detection of optimized borehole resistivity.
Abstract:
A multi-scale unsupervised seismic velocity inversion method based on an autoencoder for observation data. Large-scale information is extracted by the autoencoder, which is used for guiding an inversion network to complete the recovery of different-scale features in a velocity model, thereby reducing the non-linearity degree of inversion. A trained encoder part is embedded into the network to complete the extraction of seismic observation data information at the front end, so it can better analyze the information contained in seismic data, the mapping relationship between the data and velocity model is established better, then the inversion method is unsupervised, and location codes are added to the observation data to assist the network in perceiving the layout form of an observation system, which facilitates practical engineering application. Thus a relatively accurate inversion result of the seismic velocity model when no real geological model serves as a network training label can be achieved.
Abstract:
A method for three-dimensional velocity geological modeling with structures and velocities randomly arranged, including determining base points in three-dimensional space, building equation according to the base points to determine planar layered model, complicating a tilt layer of planar layered model, and building a fold layer model of a surface in three-dimensional space; building three-dimensional fault folded model based on the three-dimensional surface fold layer model combined with a fault plane of a random reference point and displacement of each point in a global coordinate system; building a velocity model containing a salt body based on the three-dimensional fault folded model, and simulating salt body intrusion in a geological body of a certain depth; and performing a random velocity amplitude to realize three-dimensional velocity modeling according to the layered type which has been set and according to the set velocity range and the velocity difference range between each layer of geology.
Abstract:
The present invention discloses a system and method for phased array sound wave advanced geological exploration for a shield tunneling machine. The system includes a phased array sound wave emitting and receiving apparatus, a probe automatic telescopic apparatus, an automatic protection and cleaning apparatus, and a signal processing and imaging system. Sonic probes are installed on a side wall of a main spoke, opposite to a rotation direction, of a cutterhead of the shield tunneling machine, on the basis of automatic detection of a telescopic state and a contact state, sonic array probes are enabled to make contact with a tunnel face by a hydraulic push rod, a focus sound wave is emitted by using a phased array emitting technology, and a reflected wave signal with front geological information reflected from the front of the tunnel face is received. A scanning direction of a sound wave beam is controlled and changed continuously through a host system, on the premise of obtaining a suspected abnormal body position, the suspected position is imaged in detail by using a focusing image till scanning of a whole two-dimensional section is completed, then the cutterhead is rotated to change an arrangement direction of an array to continue scanning of a next two-dimensional section, and finally three-dimensional geological exploration in front of the tunnel face is realized.
Abstract:
A multi-wavefield seismic detection method and system based on construction noise of a shield machine. Multi-wavefield seismic information such as a body wave and a surface wave formed during propagation of a seismic wave generated by excitation in a stratum is obtained by using noise information caused by the construction of a shield machine as a seismic source, a stratum velocity model along a tunnel is constructed through joint inversion, and reflection wave information or the like is used for migration imaging, to eventually implement relatively accurate detection of a geological condition in front of a tunnel face of shield construction.
Abstract:
The present invention discloses a tunnel construction large-scale integrated geophysical advanced detection model test device. The model test device includes a tunnel surrounding rock, a main tunnel model, a model test case, a water-containing geological structure device, a numerical control automated construction device and a main control chamber. The model test device is a large-scale integrated geophysical advanced detection model test device meeting the detection using a seismic wave method, an electromagnetic method and a direct-current electric method. By using the geophysical advanced detection model test device, the geophysical response features of the water-containing geological structure device in front of a tunnel face may be studied, multiple geophysical advanced detection forward and inversion methods for the water-containing geological structure device are verified, and the relationship between some geophysical detection method results and water burst quantity is studied, so as to lay a test foundation for the advanced prediction and water burst quantity prediction of the water-containing geological construction device in actual engineering.