Abstract:
The present invention discloses a tunnel construction large-scale integrated geophysical advanced detection model test device. The model test device includes a tunnel surrounding rock, a main tunnel model, a model test case, a water-containing geological structure device, a numerical control automated construction device and a main control chamber. The model test device is a large-scale integrated geophysical advanced detection model test device meeting the detection using a seismic wave method, an electromagnetic method and a direct-current electric method. By using the geophysical advanced detection model test device, the geophysical response features of the water-containing geological structure device in front of a tunnel face may be studied, multiple geophysical advanced detection forward and inversion methods for the water-containing geological structure device are verified, and the relationship between some geophysical detection method results and water burst quantity is studied, so as to lay a test foundation for the advanced prediction and water burst quantity prediction of the water-containing geological construction device in actual engineering.
Abstract:
A shield-carried noncontact frequency-domain electrical real-time advanced detection system and method. Noncontact electrodes are installed on a cutter head of a shield tunneling machine, current is emitted and received using capacitance coupling, the electrodes are connected to a host via a multi-way swivel joint, measured data is inversed and interpreted in real time, and the prediction result is transmitted to a control system of the shield tunneling machine so as to provide a technical support for safety construction of the shield tunneling machine; the noncontact electrodes are installed on the shield cutter head. Real-time advanced detection of geology in front of a tunnel face can be realized in the tunneling process, so that the requirement for quick tunneling construction is met, and the efficiency of advanced geological detection of the shield tunneling machine is improved; and an electrode system is only installed on the cutter head.
Abstract:
A rock breaking seismic source and active source three-dimensional seismic combined detection system uses a tunnel boring machine for three-dimensional seismic combined detection by active seismic source and rock breaking seismic source methods. Long-distance advanced prediction and position recognition of a geological anomalous body are realized using the active source seismic method. Machine construction is adjusted and optimized according to the detection result; real-time short-distance accurate prediction of the body is realized using the cutter head rock breaking vibration having weak energy but containing a high proportion of transverse wave components as seismic sources and adopting an unconventional rock breaking seismic source seism recording and handling method. An area surrounding rock quality to be excavated is represented and assessed. A comprehensive judgment is made to the geological condition in front of the working face with the results of active source and rock breaking seismic source three-dimensional seismic advanced detection.