Abstract:
A method for producing a lubricating oil composition includes: a step of mixing a base oil and fullerene, dissolving a soluble component of the fullerene in the base oil, and obtaining a mixture of the base oil and fullerene; a step of removing an insoluble component included in the mixture and obtaining a fullerene solution; and a step of heat-treating the fullerene solution.
Abstract:
A carbon fiber is obtained by sequentially performing: a step (I) of dissolving a fullerene mixture including fullerenes C60 and C70 in an organic solvent to prepare a fullerene solution; a step (II) of immersing a material carbon fiber in the fullerene solution; and a step (III) of extracting the carbon fiber from the fullerene solution and drying the extracted carbon fiber.
Abstract:
By sequentially performing: a step (I) of dissolving fullerene C60 in a polyalkylene glycol to prepare a fullerene solution; a step (II) of immersing a material carbon fiber in the fullerene solution; and a step (III) of extracting the carbon fiber from the fullerene solution, washing the extracted carbon fiber with water, and drying the carbon fiber washed with water, a carbon fiber on which fullerene C60 adsorbs is obtained.
Abstract:
A method for inspecting a lubricant oil composition containing a base oil and a fullerene, the method including: measuring at least one of a lamellar length of the lubricating oil composition and a most abundant diameter in a particle size distribution obtained by a dynamic light scattering method, and selecting the lubricating oil composition whose measured value is within a set range.
Abstract:
Provided is a fluorine-containing ether compound capable of forming a lubricant layer having excellent wear resistance even when the thickness is thin, and suitable as a material of a lubricant for a magnetic recording medium. The fluorine-containing ether compound is a compound represented by the following formula (1): R1—R2—CH2—R3—CH2—R4—R5; wherein R3 is a perfluoropolyether chain; R1 is a terminal group bonded to R2; R5 is a terminal group bonded to R4; R1 is an alkenyl group or an alkynyl group; R5 is a group containing a heterocyclic ring; R2 is represented by the following formula (2); R4 is represented by the following formula (3); and a in the formula (2) and b in the formula (3) are each independently an integer of 1 to 3.
Abstract:
By sequentially performing: a step (I) of dissolving fullerene C70 in an organic solvent to prepare a fullerene solution; a step (II) of immersing a material carbon fiber in the fullerene solution; and a step (III) of extracting the carbon fiber from the fullerene solution and drying the extracted carbon fiber, a carbon fiber on which fullerene C70 adsorbs is obtained.
Abstract:
A fluorine-containing ether compound represented by R1—R2—CH2—R3—CH2—R4—R5 is provided. (R3 is a perfluoropolyether chain; R1 and R5 are each independently any one of an alkyl group that may have a substituent, an organic group having at least one double bond or at least one triple bond, and a hydrogen atom; and —R2—CH2—R3 is represented by Formula (2), and R3—CH2—R4— is represented by Formula (3)) -[A]-[B]—O—CH2—R3 (2) R3—CH2—O—[C]-[D]- (3) ([A] is represented by Formula (4), [B] is represented by Formula (5), [C] is represented by Formula (6), [D] is represented by Formula (7), and in the formula, a and b are integers of 0 to 2, c is an integer of 2 to 5, d and f are integers of 0 to 2, and e is an integer of 2 to 5, and at least one of b and d in the formula is 1 or more)
Abstract:
Provided are a conductive composition for thin film printing and a method for forming a thin film conductive pattern, which can easily performing thin film printing, and can capable of improve conductivity by thermal sintering at a comparatively low temperature of 300° C. or less or by photo irradiation. A conductive composition comprises metal particles, a binder resin, and a solvent, the content of an organic compound in the solvent being 5 to 98% by mass, the organic compound comprising a hydrocarbon group having a bridged cyclic structure and a hydroxyl group, the content of metal particles being 15 to 60% by mass, the metal particles containing 20% by mass or more of flat metal particles, the content of the binder resin being 0.5 to 10 parts by mass relative to 100 parts by mass of the metal particles, and the viscosity at 25° C. being 1.0×103 to 2×105 mPa·s. The composition is printed in a pattern having any selected shape on a substrate, by screen printing, and the pattern is subjected to thermal sintering at a temperature of 300° C. or less and/or subjecting the pattern to pulsed light irradiation.