Abstract:
A solid-state image sensor including a substrate having a photoelectric conversion element disposed therein, the photoelectric conversion element converting an amount of incident light into a charge amount, a memory unit disposed at a side of the photoelectric conversion element, the memory unit receiving the charge amount from the photoelectric conversion element, a first light-shielding section formed at a first side of the memory unit and disposed between the charge accumulation region and the photoelectric conversion element, and a second light-shielding section formed at a second side of the memory unit such that the second side is opposite the first side.
Abstract:
There is provided a solid-state imaging device including a pixel array portion in which multiple unit pixels are arranged on a semiconductor substrate, the multiple unit pixels each including a photoelectric conversion portion generating and accumulating a light charge based on a quantity of received light and a charge accumulation portion accumulating the light charge, wherein at least part of an electrode closer to an incidence side on which light enters the unit pixel of the charge accumulation portion, is formed with a metal film functioning as a light blocking film.
Abstract:
There is provided a solid-state imaging device including a pixel array portion in which multiple unit pixels are arranged on a semiconductor substrate, the multiple unit pixels each including a photoelectric conversion portion generating and accumulating a light charge based on a quantity of received light and a charge accumulation portion accumulating the light charge, wherein at least part of an electrode closer to an incidence side on which light enters the unit pixel of the charge accumulation portion, is formed with a metal film functioning as a light blocking film.
Abstract:
A solid-state image sensor including a substrate having a photoelectric conversion element disposed therein, the photoelectric conversion element converting an amount of incident light into a charge amount, a memory unit disposed at a side of the photoelectric conversion element, the memory unit receiving the charge amount from the photoelectric conversion element, a first light-shielding section formed at a first side of the memory unit and disposed between the charge accumulation region and the photoelectric conversion element, and a second light-shielding section formed at a second side of the memory unit such that the second side is opposite the first side.
Abstract:
A solid-state image sensor including a substrate having a photoelectric conversion element disposed therein, the photoelectric conversion element converting an amount of incident light into a charge amount, a memory unit disposed at a side of the photoelectric conversion element, the memory unit receiving the charge amount from the photoelectric conversion element, a first light-shielding section formed at a first side of the memory unit and disposed between the charge accumulation region and the photoelectric conversion element, and a second light-shielding section formed at a second side of the memory unit such that the second side is opposite the first side.
Abstract:
A solid-state image sensor including a substrate having a photoelectric conversion element disposed therein, the photoelectric conversion element converting an amount of incident light into a charge amount, a memory unit disposed at a side of the photoelectric conversion element, the memory unit receiving the charge amount from the photoelectric conversion element, a first light-shielding section formed at a first side of the memory unit and disposed between the charge accumulation region and the photoelectric conversion element, and a second light-shielding section formed at a second side of the memory unit such that the second side is opposite the first side.
Abstract:
A solid-state imaging device includes a plurality of pixels in a two-dimensional array. Each pixel includes a photoelectric conversion element that converts incident light into electric charge, and a charge holding element that receives the electric charge from the photoelectric conversion element, and transfers the electric charge to a corresponding floating diffusion. The charge holding element further includes a plurality of electrodes.
Abstract:
A solid-state image sensor including a substrate having a photoelectric conversion element disposed therein, the photoelectric conversion element converting an amount of incident light into a charge amount, a memory unit disposed at a side of the photoelectric conversion element, the memory unit receiving the charge amount from the photoelectric conversion element, a first light-shielding section formed at a first side of the memory unit and disposed between the charge accumulation region and the photoelectric conversion element, and a second light-shielding section formed at a second side of the memory unit such that the second side is opposite the first side.
Abstract:
A solid-state imaging device includes a plurality of pixels in a two-dimensional array. Each pixel includes a photoelectric conversion element that converts incident light into electric charge, and a charge holding element that receives the electric charge from the photoelectric conversion element, and transfers the electric charge to a corresponding floating diffusion. The charge holding element further includes a plurality of electrodes.
Abstract:
A solid-state image sensor including a substrate having a photoelectric conversion element disposed therein, the photoelectric conversion element converting an amount of incident light into a charge amount, a memory unit disposed at a side of the photoelectric conversion element, the memory unit receiving the charge amount from the photoelectric conversion element, a first light-shielding section formed at a first side of the memory unit and disposed between the charge accumulation region and the photoelectric conversion element, and a second light-shielding section formed at a second side of the memory unit such that the second side is opposite the first side.