Abstract:
A solid-state imaging device is provided, which includes a photodiode having a first conductivity type semiconductor area that is dividedly formed for each pixel; a first conductivity type transfer gate electrode formed on the semiconductor substrate via a gate insulating layer in an area neighboring the photodiode, and transmitting signal charges generated and accumulated in the photodiode; a signal reading unit reading a voltage which corresponds to the signal charge or the signal charge; and an inversion layer induction electrode formed on the semiconductor substrate via the gate insulating layer in an area covering a portion or the whole of the photodiode, and composed of a conductor or a semiconductor having a work function. An inversion layer is induced, which is formed by accumulating a second conductivity type carrier on a surface of the inversion layer induction electrode side of the semiconductor area through the inversion layer induction electrode.
Abstract:
The solid-state image sensing device includes a photoelectric conversion unit, a charge holding unit for holding charges transferred from the photoelectric conversion unit, a first transfer transistor for transferring charges from the photoelectric conversion unit to the charge holding unit, and a light blocking part including a first light blocking part and a second light blocking part, in which the first light blocking part is arranged between a second surface opposite to a first surface as a light receiving surface of the photoelectric conversion unit and the charge holding unit, and covers the second surface, and is formed with a first opening, and the second light blocking part surrounds the side surface of the photoelectric conversion unit.
Abstract:
The present technology relates to a solid-state imaging device, a method of driving the solid-state imaging device, and an electronic apparatus by which pixels can be read effectively. The solid-state imaging device includes a readout unit that performs a common-source operation or a source follower operation with respect to pixels to read a signal for each column. According to a level of illumination, the readout unit performs a common-source readout operation to reset a floating diffusion region and read an electric charge transferred from a photoelectric transducer and held in the floating diffusion region, and performs a source follower readout operation to reset the floating diffusion region and read the electric charge transferred from the photoelectric transducer and held in the floating diffusion region. The present technology is applicable to a solid-state imaging device such as a CMOS image sensor.
Abstract:
A solid-state imaging device is provided, which includes a photodiode having a first conductivity type semiconductor area that is dividedly formed for each pixel; a first conductivity type transfer gate electrode formed on the semiconductor substrate via a gate insulating layer in an area neighboring the photodiode, and transmitting signal charges generated and accumulated in the photodiode; a signal reading unit reading a voltage which corresponds to the signal charge or the signal charge; and an inversion layer induction electrode formed on the semiconductor substrate via the gate insulating layer in an area covering a portion or the whole of the photodiode, and composed of a conductor or a semiconductor having a work function. An inversion layer is induced, which is formed by accumulating a second conductivity type carrier on a surface of the inversion layer induction electrode side of the semiconductor area through the inversion layer induction electrode.
Abstract:
A solid-state imaging device includes a photoelectric conversion section configured to generate photocharges and a transfer gate that transfers the photocharges to a semiconductor region. A method for driving a unit pixel includes a step of accumulating photocharges in a photoelectric conversion section and a step of accumulating the photocharges in a semiconductor region. A method of forming a solid-state imaging device includes implanting ions into a well layer through an opening in a mask, implanting additional ions into the well layer through an opening in another mask, and implanting other ions into the well layer through an opening in yet another mask. An electronic device includes the solid-state imaging device.
Abstract:
There is provided a solid-state imaging device including a pixel array portion in which multiple unit pixels are arranged on a semiconductor substrate, the multiple unit pixels each including a photoelectric conversion portion generating and accumulating a light charge based on a quantity of received light and a charge accumulation portion accumulating the light charge, wherein at least part of an electrode closer to an incidence side on which light enters the unit pixel of the charge accumulation portion, is formed with a metal film functioning as a light blocking film.
Abstract:
There is provided a solid state imaging device including a photoelectric conversion unit that performs photoelectric conversion of converting incident light into charges and accumulates the charges, a charge-voltage conversion unit that converts the charges which have been subjected to the photoelectric conversion by the photoelectric conversion unit into a voltage, a charge transfer unit that transfers charges to the charge-voltage conversion unit, a charge reset unit that resets charges of the charge-voltage conversion unit, and a driving unit that performs driving such that a potential of a drain of the charge reset unit is controlled so that the charges are accumulated in the photoelectric conversion unit and the charge-voltage conversion unit up to a saturation level, and then the photoelectric conversion unit is subject to light exposure.
Abstract:
There is provided a solid-state imaging device including a pixel array portion in which multiple unit pixels are arranged on a semiconductor substrate, the multiple unit pixels each including a photoelectric conversion portion generating and accumulating a light charge based on a quantity of received light and a charge accumulation portion accumulating the light charge, wherein at least part of an electrode closer to an incidence side on which light enters the unit pixel of the charge accumulation portion, is formed with a metal film functioning as a light blocking film.
Abstract:
A pixel circuit includes a floating diffusion layer of a first conductivity-type between a drain/source of a second conductivity-type and a source/drain of the second conductivity-type. The source/drain and the drain/source touch the floating diffusion layer. A cathode of a photoelectric converter is electrically connected to the floating diffusion layer. An anode of the photoelectric converter touches the cathode. The cathode is of the first conductivity-type and the anode is of the second conductivity-type.
Abstract:
A CMOS image sensor has an image array as a matrix of unit pixels each including at least a photodiode, a memory for holding a charge stored in the photodiode, a floating diffusion region for converting the charge in the memory into a voltage, a first transfer gate for transferring the charge from the photodiode to the memory, a second transfer gate for transferring the charge from the memory to the floating diffusion region, and a resetting transistor for resetting the charge in the floating diffusion region. The unit pixels are driven to set the potential of a potential barrier at a boundary between the memory and the floating diffusion region to a potential such that a charge overflowing the memory is transferred to the floating diffusion region, when the first transfer gate is turned on. The CMOS image sensor operates in a global shutter mode for capturing moving images.