OPTIMIZED DESIGN METHOD AND SYSTEM FOR CARBON DIOXIDE GEOLOGICAL STORAGE PARAMETERS IN DEPLETED GAS RESERVOIR

    公开(公告)号:US20240344428A1

    公开(公告)日:2024-10-17

    申请号:US18412729

    申请日:2024-01-15

    CPC classification number: E21B41/0064 E21B43/30 E21B2200/20

    Abstract: An optimized design method and system for carbon dioxide geological storage parameters of a depleted gas reservoir is provided, including: collecting data of a depleted gas reservoir in which carbon dioxide geological storage is to be carried out, and establishing a numerical simulation model of the depleted gas reservoir; carrying out fitting of production performance history to obtain current state information; simulating and predicting production performance data after carbon dioxide injection into depleted oil and gas reservoirs under different combinations of well pattern parameters and injection parameters using a numerical simulation technology; calculating a parameter value representing a uniform pressure rise according to the production performance data; updating well pattern parameters and injection parameters using a genetic algorithm; repeating above steps until an iterative convergence condition is met; and determining an optimal combination of carbon dioxide injection process parameters according to an output optimal target value.

    HYDRATE SOLID-STATE FLUIDIZATION MINING METHOD AND SYSTEM UNDER UNDERBALANCED REVERSE CIRCULATION CONDITION

    公开(公告)号:US20200291754A1

    公开(公告)日:2020-09-17

    申请号:US16604109

    申请日:2018-11-20

    Abstract: A hydrate solid-state fluidization mining method and system under an underbalanced reverse circulation condition are used for solid-state fluidization mining on a non-rock-forming weak-cementation natural gas hydrate layer in the ocean. Equipment includes a ground equipment system and an underwater equipment system. The construction procedure includes an earlier-stage construction process, pilot hole drilling construction process, reverse circulation jet fragmentation process, underbalanced reverse circulation fragment recovery process and silt backfilling process. Natural gas hydrates in the seafloor are mined through an underbalanced reverse circulation method. Problems such as shaft safety, production control and environmental risks faced by conventional natural gas hydrate mining methods such as depressurization, heat injection, agent injection and replacement are effectively solved. By using the method, the weak-cementation non-rock-forming natural gas hydrates in the seafloor can be mined in environment-friendly, efficient, safe and economical modes, more energy resources can be provided, and energy shortage dilemmas are solved.

    NATURAL GAS HYDRATE SOLID-STATE FLUIDIZATION MINING METHOD AND SYSTEM UNDER UNDERBALANCED POSITIVE CIRCULATION CONDITION

    公开(公告)号:US20200300066A1

    公开(公告)日:2020-09-24

    申请号:US16604106

    申请日:2018-11-20

    Abstract: A natural gas hydrate solid-state fluidization mining method and system under an underbalanced positive circulation condition, used for performing solid-state fluidization mining on a non-rock-forming weak-cementation natural gas hydrate layer in the ocean. Equipment includes a ground equipment system and an underwater equipment system. The construction procedure has an earlier-stage construction process, underbalanced hydrate solid-state fluidization mining construction process and silt backfilling process. Natural gas hydrates in the seafloor are mined through an underbalanced positive circulation method, and problems such as shaft safety, production control and environmental risks faced by conventional natural gas hydrate mining methods such as depressurization, heat injection, agent injection and replacement are effectively solved. By using the natural gas hydrate solid-state fluidization mining method weak-cementation non-rock-forming natural gas hydrates in the seafloor can be mined in environment-friendly, efficient, safe and economical modes, more energy resources are provided, and energy shortage dilemmas are solved.

    CRUSHING SYSTEM FOR LARGE-SIZE NATURAL GAS HYDRATE ROCK SAMPLES

    公开(公告)号:US20200290052A1

    公开(公告)日:2020-09-17

    申请号:US16604100

    申请日:2018-11-20

    Abstract: A crushing system for large-size natural gas hydrate rock samples, which mainly includes a crushing and stirring control subsystem, crushing and stirring execution subsystem and hydrate preparation subsystem. Full automatic control to parameter acquisition and experimental process is achieved by utilizing modern automation technology, including the function of automatically crushing the large-size natural gas hydrate rock samples and also monitoring, collecting and storing the drilling pressure, the torque and the internal furnace pressure and temperature parameters during the crushing process in real time, to provide reliable guarantee for the follow-up researches on crushing mechanism, crushing efficiency, drilling parameter optimization, rock crushing ability evaluation of a crushing tool and the like of the large-size natural gas hydrate rock samples and necessary experimental verification means for optimization of on-site exploiting construction conditions of natural gas hydrate.

    SURFACE-ACTIVE TWO-TAILED HYDROPHOBIC ASSOCIATED POLYMER AND PREPARATION METHOD THEREOF

    公开(公告)号:US20200062881A1

    公开(公告)日:2020-02-27

    申请号:US16069167

    申请日:2017-05-22

    Abstract: The present invention provides a surface-active two-tailed hydrophobic associated polymer and a preparation method thereof. The surface-active two-tailed hydrophobic associated polymer is prepared using a micellar free radical copolymerization method including: adding a surfactant sodium lauryl sulfate and a hydrophobic monomer N-phenethyl-N-alkyl (methyl) acrylamide or N-benzyl-N-alkyl (methyl) acrylamide into an aqueous solution containing acrylamide, acrylic acid, 2-acrylamide-2-methylpropanesulfonic acid, and surface-active macromonomer polyoxyethylene lauryl ether (methyl) acrylate, wherein the surfactant is used to solubilize the hydrophobic monomer in the formed micelle; adjusting pH to 6-8 with sodium hydroxide, and copolymerizing the hydrophobic monomer and a water-soluble monomer by means of photoinitiation. The properties, such as viscosifying property, temperature resistance, salt resistance and hydrolysis resistance, of the hydrophobic associated polymer can be effectively improved. The preparation method is reliable in principle and simple in operation and has a wide market prospect.

Patent Agency Ranking