Abstract:
Photon-based radiosurgery is widely used for treating local and regional tumors. The key to improving the quality of radiosurgery is to increase the dose falloff rate from high dose regions inside the tumor to low dose regions of nearby healthy tissues and structures. Dynamic photon painting (DPP) further increases dose falloff rate by treating a target by moving a beam source along a dynamic trajectory, where the speed, direction and even dose rate of the beam source change constantly during irradiation. DPP creates dose gradient that rivals proton Bragg Peak and outperforms Gamma Knife® radiosurgery.
Abstract:
Systems and methods for simultaneously recovering and separate sounds from multiple sources using Impulse Radio Ultra-Wideband (IR-UWB) signals are described. In one embodiment, a device can be configured for generating an audio signal based on audio source ranging using ultrawideband signals. In an embodiment the device includes, a transmitter circuitry, a receiver circuitry, memory and a processor. The processor configured to generate a radio signal. The radio signal including an ultra-wideband Gaussian pulse modulated on a radio-frequency carrier. The processor further configured to transmit the radio signal using the transmitter circuitry, receive one or more backscattered signals at the receiver circuitry, demodulate the one or more backscattered signals to generate one or more baseband signals, and generate a set of data frames based on the one or more baseband signals.
Abstract:
Photon-based radiosurgery is widely used for treating local and regional tumors. The key to improving the quality of radiosurgery is to increase the dose falloff rate from high dose regions inside the tumor to low dose regions of nearby healthy tissues and structures. Dynamic photon painting (DPP) further increases dose falloff rate by treating a target by moving a beam source along a dynamic trajectory, where the speed, direction and even dose rate of the beam source change constantly during irradiation. DPP creates dose gradient that rivals proton Bragg Peak and outperforms Gamma Knife® radiosurgery.