Abstract:
Methods and systems are described for enabling display system data transmission during use. An integrated circuit package includes input interface circuitry configured to receive an audio-video data stream having a video signal and timing information and timing extraction circuitry that can identify blanking patterns for the video signal. The package includes input processing circuitry for receiving audio-video signal and converting the audio-video data stream input into a low voltage differential signal (LVDS). The package includes a timing controller having timing extraction circuitry, a set of symbol buffers, a scheduler, and timing control circuitry. All configured to implement LVDS data transfer and in some implementation enable point to point data transfer from data buffers to associated column drivers.
Abstract:
Methods and systems are described for transmitting and displaying video data after a hot plug event during a start-up dead period. In particular, hot plug events occurring when a toggleable hot plug detection mechanism is used.
Abstract:
A passive cable adaptor for connecting a data source device with a display device is described. The adaptor has a packet-based interface connector at one end, the connector having a positive main link pin, a negative main link pin, a positive auxiliary channel pin, and a negative auxiliary channel pin. At the other end is a micro serial interface connector, wherein multimedia content is transmitted over the cable adaptor and electrical power is supplied over the cable adaptor simultaneously. The cable adaptor has an auxiliary and hot plug detect (HPD) controller utilized to map the auxiliary channel and HPD signals of the packet-based digital display to the micro serial interface ID signal.
Abstract:
A passive cable adaptor for connecting a data source device with a display device is described. The adaptor has a packet-based interface connector at one end, the connector having a positive main link pin, a negative main link pin, a positive auxiliary channel pin, and a negative auxiliary channel pin. At the other end is a micro serial interface connector, wherein multimedia content is transmitted over the cable adaptor and electrical power is supplied over the cable adaptor simultaneously. The cable adaptor has an auxiliary and hot plug detect (HPD) controller utilized to map the auxiliary channel and HPD signals of the packet-based digital display to the micro serial interface ID signal.
Abstract:
A multimedia sink device comprises: 1) a connector configured to be connected to an adaptor cable; 2) detection circuitry configured to detect when the adaptor cable is connected to the connector; and 3) hot plug detection (HPD) circuitry configured to determine if a configuration circuit is coupled to an HPD line of the multimedia sink device. In response to a determination that the configuration circuit is coupled to the HPD line, the HPD circuitry determines if the configuration circuit is associated with the adaptor cable. The HPD circuitry reads configuration data from the configuration circuit associated with the adaptor cable. The configuration data indicates the configuration circuit is resident in the cable adaptor and causes the multimedia sink device to increase a voltage level of a power supply voltage provided by the multimedia sink device to a multimedia source device via the adaptor cable.
Abstract:
A passive cable adaptor for connecting a data source device with a display device is described. The adaptor has a packet-based interface connector at one end, the connector having a positive main link pin, a negative main link pin, a positive auxiliary channel pin, and a negative auxiliary channel pin. At the other end is a micro serial interface connector, wherein multimedia content is transmitted over the cable adaptor and electrical power is supplied over the cable adaptor simultaneously. The cable adaptor has an auxiliary and hot plug detect (HPD) controller utilized to map the auxiliary channel and HPD signals of the packet-based digital display to the micro serial interface ID signal.
Abstract:
A passive cable adaptor for connecting a data source device with a display device is described. The adaptor has a packet-based interface connector at one end, the connector having a positive main link pin, a negative main link pin, a positive auxiliary channel pin, and a negative auxiliary channel pin. At the other end is a micro serial interface connector, wherein multimedia content is transmitted over the cable adaptor and electrical power is supplied over the cable adaptor simultaneously. The cable adaptor has an auxiliary and hot plug detect (HPD) controller utilized to map the auxiliary channel and HPD signals of the packet-based digital display to the micro serial interface ID signal.