Abstract:
A gyroscope includes: a mass, which is movable with respect to a supporting body; a driving loop for keeping the mass in oscillation according to a driving axis; a reading device, which supplying an output signal indicating an angular speed of the body; and a compensation device, for attenuating spurious signal components in quadrature with respect to a velocity of oscillation of the mass. The reading device includes an amplifier, which supplies a transduction signal indicating a position of the mass according to a sensing axis. The compensation device forms a control loop with the amplifier, extracts from the transduction signal an error signal representing quadrature components in the transduction signal, and supplies to the amplifier a compensation signal such as to attenuate the error signal.
Abstract:
A microelectromechanical device includes: a body; a movable mass, elastically coupled to the body and oscillatable with respect to the body according to a degree of freedom; a frequency detector, configured to detect a current oscillation frequency of the movable mass; and a forcing stage, capacitively coupled to the movable mass and configured to provide energy to the movable mass through forcing signals having a forcing frequency equal to the current oscillation frequency detected by the frequency detector, at least in a first transient operating condition.
Abstract:
A gyroscope includes: a mass, which is movable with respect to a supporting body; a driving loop for keeping the mass in oscillation according to a driving axis; a reading device, which supplying an output signal indicating an angular speed of the body; and a compensation device, for attenuating spurious signal components in quadrature with respect to a velocity of oscillation of the mass. The reading device includes an amplifier, which supplies a transduction signal indicating a position of the mass according to a sensing axis. The compensation device forms a control loop with the amplifier, extracts from the transduction signal an error signal representing quadrature components in the transduction signal, and supplies to the amplifier a compensation signal such as to attenuate the error signal.
Abstract:
A clock-signal generator circuit, for generating an output clock signal starting from an input clock signal, includes: a monostable stage having a clock input configured to receive the input clock signal, a control input configured to receive a control signal, and an output configured to supply the output clock signal having a duty cycle variable as a function of the control signal; and a feedback loop, operatively coupled to the monostable stage for generating the control signal as a function of a detected value, and of a desired value, of the duty cycle of the output clock signal.
Abstract:
A driving device of a driving mass of a gyroscope comprises a differential read amplifier to supply first signals indicating a rate of oscillation of the driving mass; a variable-gain amplifier to supply second signals to drive the driving mass based on said first signals; a voltage elevator providing a power supply signal to the variable-gain amplifier; a controller generating a first control signal to control a gain of the variable-gain amplifier; and a first comparator, coupled to the variable-gain amplifier, generating a second control signal based on a comparison of the first control signal with a threshold, the second control signal controlling at least one among: (i) the variable-gain amplifier in such a way that the gain is increased only during the start-up phase of the gyroscope, and (ii) the voltage elevator in such a way that the power supply signal is increased only during the start-up phase.
Abstract:
A microelectromechanical device includes: a body; a movable mass, elastically coupled to the body and oscillatable with respect to the body according to a degree of freedom; a frequency detector, configured to detect a current oscillation frequency of the movable mass; and a forcing stage, capacitively coupled to the movable mass and configured to provide energy to the movable mass through forcing signals having a forcing frequency equal to the current oscillation frequency detected by the frequency detector, at least in a first transient operating condition.
Abstract:
A microelectromechanical device includes: a body; a movable mass, elastically coupled to the body and oscillatable with respect to the body according to a degree of freedom; a frequency detector, configured to detect a current oscillation frequency of the movable mass; and a forcing stage, capacitively coupled to the movable mass and configured to provide energy to the movable mass through forcing signals having a forcing frequency equal to the current oscillation frequency detected by the frequency detector, at least in a first transient operating condition.
Abstract:
A microelectromechanical device includes: a body; a movable mass, elastically coupled to the body and oscillatable with respect to the body according to a degree of freedom; a frequency detector, configured to detect a current oscillation frequency of the movable mass; and a forcing stage, capacitively coupled to the movable mass and configured to provide energy to the movable mass through forcing signals having a forcing frequency equal to the current oscillation frequency detected by the frequency detector, at least in a first transient operating condition.
Abstract:
A gyroscope includes: a mass, which is movable with respect to a supporting body; a driving loop for keeping the mass in oscillation according to a driving axis; a reading device, which supplying an output signal indicating an angular speed of the body; and a compensation device, for attenuating spurious signal components in quadrature with respect to a velocity of oscillation of the mass. The reading device includes an amplifier, which supplies a transduction signal indicating a position of the mass according to a sensing axis. The compensation device forms a control loop with the amplifier, extracts from the transduction signal an error signal representing quadrature components in the transduction signal, and supplies to the amplifier a compensation signal such as to attenuate the error signal.