Abstract:
An integrated circuit includes a back side illuminated image sensor formed by a substrate supporting at least one pixel, an interconnect part situated above a front side of the substrate and an anti-reflective layer situated above a back side of the substrate. The anti-reflective layer may be formed of a silicon nitride layer. An additional layer is situated above the anti-reflective layer. The additional layer is formed of one of amorphous silicon nitride or hydrogenated amorphous silicon nitride, in which the ratio of the number of silicon atoms per cubic centimeter to the number of nitrogen atoms per cubic centimeter is greater than 0.7.
Abstract:
A pixel includes a first electrode layer on an exposed surface of an interconnection structure and in contact with a conductive element of the interconnection structure. An insulating layer extends over the first electrode layer and includes opening crossing through the insulating layer to the first electrode layer. A second electrode layer is on top of and in contact with the first electrode layer and the insulating layer in the opening. A film configured to convert photons into electron-hole pairs is on the insulating layer, the second electrode layer and filling the opening. A third electrode layer covers the film.
Abstract:
A back-illuminated integrated imaging device is formed from a semiconductor substrate including a zone of pixels bounded by capacitive deep trench isolations. A peripheral zone is located outside the zone of pixels. A continuous electrically conductive layer forms, in the zone of pixels, an electrode in a trench for each capacitive deep trench isolation, and forms, in the peripheral zone, a redistribution layer for electrically coupling the electrode to a biasing contact pad. The electrode is located in the trench between a trench dielectric and at least one material for filling the trench.
Abstract:
An integrated circuit includes a back side illuminated image sensor formed by a substrate supporting at least one pixel, an interconnect part situated above a front side of the substrate and an anti-reflective layer situated above a back side of the substrate. The anti-reflective layer may be formed of a silicon nitride layer. An additional layer is situated above the anti-reflective layer. The additional layer is formed of one of amorphous silicon nitride or hydrogenated amorphous silicon nitride, in which the ratio of the number of silicon atoms per cubic centimeter to the number of nitrogen atoms per cubic centimeter is greater than 0.7.
Abstract:
A back-illuminated integrated imaging device is formed from a semiconductor substrate including a zone of pixels bounded by capacitive deep trench isolations. A peripheral zone is located outside the zone of pixels. A continuous electrically conductive layer forms, in the zone of pixels, an electrode in a trench for each capacitive deep trench isolation, and forms, in the peripheral zone, a redistribution layer for electrically coupling the electrode to a biasing contact pad. The electrode is located in the trench between a trench dielectric and at least one material for filling the trench.