Abstract:
A circuit includes a timer circuit configured to generate a first control signal defining a first time period and a second control signal defining a second time period. A controller is configured to control a high-side and a low-side transistor of a half-bridge circuit in response to the first and second control signals only during a first switching cycle of the half-bridge circuit. The half-bridge circuit includes a bootstrap capacitor coupled to a node between the high-side and low-side transistors. The controller turns on the low-side transistor for the first time period during the first switching cycle and configured turns off the low-side and the high-side transistors for the second time period during the first switching cycle.
Abstract:
A control device controls a switching circuit for a converter. The switching circuit comprises a half-bridge having a high-side transistor and a low-side transistor. The control device comprises a controller configured to control turning on and turning off said two transistors, so that a square-wave voltage is applied to the transformer primary. The controller is configured to start switching the half-bridge by turning on the low-side transistor. The control device comprises a first timer configure to initially turn on the low-side transistor for a duration given by a first time period useful for pre-charging a bootstrap capacitor couplable to the middle point of the half-bridge, and a second timer configured to keep the low-side transistor and the high-side transistor turned off for a second time period immediately following the first time period and having a longer duration than the first time period.
Abstract:
A control device of a switching circuit of a resonant apparatus is described. The switching circuit comprises at least one half-bridge having a high-side transistor and a low-side transistor connected between an input voltage and a reference voltage; the resonant apparatus comprises a resonant load. The control device is configured to determine the on time period and the off time period of the transistors alternatively and a dead time of both the transistors so that a periodic square-wave voltage is applied to the resonant load. The control device comprises a detector adapted to detect the current sign flowing through the resonant load and a correction circuit configured to extend the current operating time period of said two transistors in response to at least the current sign detected from the detection means.
Abstract:
A circuit includes a timer circuit configured to generate a first control signal defining a first time period and a second control signal defining a second time period. A controller is configured to control a high-side and a low-side transistor of a half-bridge circuit in response to the first and second control signals only during a first switching cycle of the half-bridge circuit. The half-bridge circuit includes a bootstrap capacitor coupled to a node between the high-side and low-side transistors. The controller turns on the low-side transistor for the first time period during the first switching cycle and configured turns off the low-side and the high-side transistors for the second time period during the first switching cycle.
Abstract:
An effective method enhances energy saving at low load in a resonant converter with a hysteretic control scheme for implementing burst-mode at light load. The method causes a current controlled oscillator of the converter to stop oscillating when a feedback control current of the output voltage of the converter reaches a first threshold value, and introduces a nonlinearity in the functional relation between the frequency of oscillation and said feedback control current or in a derivative of the functional relation, while the control current is between a lower, second threshold value and the first threshold value, such that the frequency of oscillation remains equal or smaller than the frequency of oscillation when the control current is equal to the second threshold value. Several circuital implementations are illustrated, all of simple realization without requiring any costly microcontroller.
Abstract:
A control device controls a switching circuit for a converter. The switching circuit comprises a half-bridge having a high-side transistor and a low-side transistor. The control device comprises a controller configured to control turning on and turning off said two transistors, so that a square-wave voltage is applied to the transformer primary. The controller is configured to start switching the half-bridge by turning on the low-side transistor. The control device comprises a first timer configure to initially turn on the low-side transistor for a duration given by a first time period useful for pre-charging a bootstrap capacitor couplable to the middle point of the half-bridge, and a second timer configured to keep the low-side transistor and the high-side transistor turned off for a second time period immediately following the first time period and having a longer duration than the first time period.
Abstract:
A control device of a switching circuit of a resonant apparatus is described. The switching circuit comprises at least one half-bridge having a high-side transistor and a low-side transistor connected between an input voltage and a reference voltage; the resonant apparatus comprises a resonant load. The control device is configured to determine the on time period and the off time period of the transistors alternatively and a dead time of both the transistors so that a periodic square-wave voltage is applied to the resonant load. The control device comprises a detector adapted to detect the current sign flowing through the resonant load and a correction circuit configured to extend the current operating time period of said two transistors in response to at least the current sign detected from the detection means.