Abstract:
Disclosed is a liquid crystal composition including at least one compound selected from the group consisting of a liquid crystal compound expressed by Formula 1-1 and a liquid crystal compound expressed by Formula 1-2; at least one compound selected from the group consisting of a self-alignment compound expressed by Formula 2-1 and a self-alignment compound expressed by Formula 2-2; and at least one compound selected from the group consisting of a reactive mesogen expressed by Formula 3-1, a reactive mesogen expressed by Formula 3-2, a reactive mesogen expressed by Formula 3-3, a reactive mesogen expressed by Formula 3-4, and a reactive mesogen expressed by Formula 3-5. The liquid crystal composition also has negative dielectric anisotropy.
Abstract:
A liquid crystal display includes a first substrate, a gate line on the first substrate, a thin film transistor on the first substrate and connected to the gate line, a first electrode and a second electrode on the first substrate, an insulating layer between the first electrode and the second electrode, a second substrate facing the first substrate, and a liquid crystal layer between the first substrate and the second substrate and including a liquid crystal molecule. One of the first electrode and the second electrode includes a plurality of branch electrodes extending in an extension direction parallel to the gate line, and the other one of the first electrode and the second electrode has a planar shape. The liquid crystal molecule of the liquid crystal layer has negative dielectric anisotropy.
Abstract:
Provided is a liquid crystal display device including a first substrate on which a first alignment layer is formed, a second substrate on which a second alignment layer is formed, and a liquid crystal layer disposed between the first and second alignment layers and including liquid crystals of a helical structure in which a helical axis is parallel to the first and second substrates. At least one of the first and second alignment layers has a graduation distribution profile of a pretilt angle which ranges from about 0 degrees to about 90 degrees.
Abstract:
A display device and method of manufacturing same includes: a display panel having a pixel area and a peripheral area adjacent to the pixel area, a light control layer disposed on the display panel and at least partially overlapping the pixel area, a light blocking portion at least partially overlapping the peripheral area, and a protective layer disposed between the light control layer and the light blocking portion.
Abstract:
A display panel includes an upper display substrate and a lower display substrate. The upper display substrate includes a base substrate, a light shielding pattern, and including an opening part defined therein which corresponds to the pixel region, a color filter overlapped with the pixel region, an encapsulation layer disposed in lower sides of the light shielding pattern and the color filter, a partition wall disposed in a lower side of the encapsulation layer, overlapped with the light shielding region, and including a partition wall opening part defined therein which corresponds to the pixel region, and a quantum dot layer disposed inside the partition wall opening part. The partition wall includes a first layer directly disposed on the bottom surface of the encapsulation layer and a second layer directly disposed on a lower side of the first layer and having a larger optical density than the first layer.
Abstract:
A thin film transistor array panel includes an insulation substrate; a gate line and a first electrode on the insulation substrate; a gate insulating layer on the gate line and the first electrode; a data line on the gate insulating layer; a passivation layer on the gate insulating layer and the data line; and a second electrode on the passivation layer. Relative permittivity (ε) of the gate insulating layer is more than about 15, and a thickness of the gate insulating layer is about 2000 angstroms.
Abstract:
A liquid crystal display includes: a first insulation substrate; a gate line and a data line formed on the first insulation substrate; a first electrode and a second electrode formed on the gate line and the data line and overlapping each other via an insulating layer interposed therebetween; a second insulation substrate facing the first insulation substrate; and a chiral dopant inserted between the first insulation substrate and the second insulation substrate. A content of the chiral dopant may be within about 1%, and liquid crystal molecules of a liquid crystal layer may be twisted with a pitch of about 10 μm to about 100 μm by the chiral dopant.
Abstract:
A liquid crystal composition includes: at least one liquid crystal compound selected from the group consisting of Chemical Formulas 1-1 to 1-8; at least one self-aligned compound selected from the group consisting of Chemical Formulas 2-1 and 2-2; and at least one reactive mesogen selected from the group consisting of Chemical Formulas 3-1 to 3-5. Compositions and devices constructed therewith are capable of ameliorating liquid crystal drip spots that typically occur in a manufacturing process. In addition, the display devices using the composition do not require an additional alignment layer, which simplifies manufacturing.
Abstract:
A liquid crystal display includes: a first substrate; a gate line on the first substrate; a gate insulating layer on the gate line; a semiconductor layer on the gate insulating layer; a data line and a drain electrode on the semiconductor layer; a passivation layer covering the data line and the drain electrode; a common electrode on the passivation layer; an interlayer insulating layer on the common electrode; a pixel electrode on the interlayer insulating layer; an additional insulating layer on the pixel electrode; a second substrate opposite to the first substrate; and a black matrix on the second substrate, and including a vertical portion covering the data line and a horizontal portion covering the gate line and the drain electrode, where an empty portion is defined through the additional insulating layer in a portion corresponding to the black matrix.
Abstract:
Provided is a liquid crystal display device including a first substrate on which a first alignment layer is formed, a second substrate on which a second alignment layer is formed, and a liquid crystal layer disposed between the first and second alignment layers and including liquid crystals of a helical structure in which a helical axis is parallel to the first and second substrates. At least one of the first and second alignment layers has a graduation distribution profile of a pretilt angle which ranges from about 0 degrees to about 90 degrees.