Abstract:
A color conversion display panel includes a substrate. A color conversion portion is disposed on the substrate. The color conversion portion includes a semiconductor nanocrystal. A transmission portion is disposed on the substrate. A blue light blocking filter is disposed between the substrate and the color conversion portion. The blue light blocking filter includes a first convex portion that protrudes toward the substrate. The transmission portion includes a first region including a scatterer and a second region including a second convex portion that protrudes toward the substrate.
Abstract:
A liquid crystal display device includes a gate driving unit connected to an ith gate line and a first compensation line, a data driving unit connected to a jth data line and a pixel unit including a first switching element including a first electrode connected to the jth data line, a pixel electrode connected to second electrode of the first switching element, and a compensation capacitor including a first electrode connected to the first compensation line and a second electrode connected to the pixel electrode, where the gate driving unit includes a second switching element including a gate electrode connected to an i−1th gate line, a first electrode connected to a reset line, and a second electrode connected to the first compensation line, and a third switching element including a gate electrode connected to an i+1th gate line and a first electrode connected to the first compensation line.
Abstract:
A color conversion display panel includes a substrate. A color conversion portion is disposed on the substrate. The color conversion portion includes a semiconductor nanocrystal. A transmission portion is disposed on the substrate. A blue light blocking filter is disposed between the substrate and the color conversion portion. The blue light blocking filter includes a first convex portion that protrudes toward the substrate. The transmission portion includes a first region including a scatterer and a second region including a second convex portion that protrudes toward the substrate.
Abstract:
A display panel in which a graphic processing unit (GPU) of a personal computer (PC) is directly connected to a timing controller (T-Con) to exchange control signals, and a display apparatus including the display panel. The display panel includes a timing controller converting a video signal, an LED converter controlling an LED output based on a control of the timing controller, and a TFT pixel array displaying an image on a screen based on the control of the timing controller, wherein the T-Con is directly connected to a GPU of a PC, and transmits and receives a control signal to display the image on the screen.
Abstract:
A color conversion display panel includes a substrate. A color conversion portion is disposed on the substrate. The color conversion portion includes a semiconductor nanocrystal. A transmission portion is disposed on the substrate. A blue light blocking filter is disposed between the substrate and the color conversion portion. The blue light blocking filter includes a first convex portion that protrudes toward the substrate. The transmission portion includes a first region including a scatterer and a second region including a second convex portion that protrudes toward the substrate.
Abstract:
A color conversion display panel includes a substrate. A color conversion portion is disposed on the substrate. The color conversion portion includes a semiconductor nanocrystal. A transmission portion is disposed on the substrate. A blue light blocking filter is disposed between the substrate and the color conversion portion. The blue light blocking filter includes a first convex portion that protrudes toward the substrate. The transmission portion includes a first region including a scatterer and a second region including a second convex portion that protrudes toward the substrate.
Abstract:
The present disclosure is related to a display device including: a display panel including a display surface displaying an image; and a morphing driver disposed at an opposite side of the display surface of the display panel and physically controlling a height of the display surface in a first direction which is substantially perpendicular to the display surface according to depth information of input image data, wherein the morphing driver comprises at least one among a piezoelectric film, an electroactive polymer, and a magnetic generator.