Abstract:
A display device includes a display panel including a plurality of pixels, a gate driver configured to provide gate signals to the plurality of pixels, a data driver configured to provide data signals to the plurality of pixels, a correction data memory configured to store mura correction data, and a controller configured to control the gate driver and the data driver. The controller includes a pattern detection block configured to detect a set pattern in input image data, and a mura correction block configured to perform a mura correction operation that corrects the input image data based on the mura correction data in response to the set pattern not being detected, and to not perform the mura correction operation in accordance with the set pattern being detected.
Abstract:
A liquid crystal display is provided. The liquid crystal display includes a first display substrate, a second display substrate which faces the first display substrate, and a liquid crystal layer which is disposed between the first display substrate and the second display substrate. The first display substrate comprises a first base substrate, a reflective electrode which is disposed on the first base substrate, and a pixel electrode which is disposed on the reflective electrode. The second display substrate comprises a second base substrate, a color filter layer which comprises a first color filter disposed on a surface of the second base substrate which faces the first base substrate and a second color filter configured to display a different color from the first color filter, a protruding pattern which is formed on a surface of the color filter layer facing the first base substrate and which extends along a boundary between the first color filter and the second color filter, and reflective members which are disposed on sidewalls of the protruding pattern.
Abstract:
A liquid crystal display is provided. The liquid crystal display includes a first display substrate, a second display substrate which faces the first display substrate, and a liquid crystal layer which is disposed between the first display substrate and the second display substrate. The first display substrate comprises a first base substrate, a reflective electrode which is disposed on the first base substrate, and a pixel electrode which is disposed on the reflective electrode. The second display substrate comprises a second base substrate, a color filter layer which comprises a first color filter disposed on a surface of the second base substrate which faces the first base substrate and a second color filter configured to display a different color from the first color filter, a protruding pattern which is formed on a surface of the color filter layer facing the first base substrate and which extends along a boundary between the first color filter and the second color filter, and reflective members which are disposed on sidewalls of the protruding pattern.
Abstract:
A display device includes a plurality of first pixels disposed in a first pixel area and initialized by a voltage of a first initialization power source, a plurality of second pixels disposed in a second pixel area and initialized by a voltage of a second initialization power source different from the first initialization power source, a data driver that supplies a data signal to a plurality of data lines connected to the first pixels and the second pixels, and a scan driver that supplies a scan signal to a plurality of scan lines connected to the first pixels and the second pixels. A black data signal supplied from the data driver to the first pixels and a black data signal supplied from the data driver to the second pixels are set to the same voltage.
Abstract:
A reflective liquid crystal display device is provided. A reflective liquid crystal display device comprising: a first substrate and a second substrate facing each other; a liquid crystal layer interposed between the first substrate and the second substrate; a plurality of gate lines and a plurality of data lines disposed on the first substrate and intersecting each other so as to define unit pixels; a reflective layer disposed on the gate lines and the data lines; and a color filter disposed on the reflective layer, wherein the color filter includes a red color filter, a green color filter and a blue color filter, wherein the blue color filter has an area larger than an area of the red color filter and an area of the green color filter, and wherein the blue color filter extends to a blue pixel region and a pixel region adjacent to the blue pixel region.
Abstract:
A display device may include a first layer, a passivation layer, and a pixel. The passivation layer may overlap the first layer and may include a first passivation portion and a second passivation portion. The pixel may include a first-color filter, a first-color-corresponding electrode, a second-color filter, and a second-color-corresponding electrode. The first-color-corresponding electrode may overlap the first-color filter and may be positioned between the first layer and the first passivation portion. The second-color-corresponding electrode may overlap the second-color filter. The second passivation portion may be positioned between the first layer and the second-color-corresponding electrode.