Abstract:
A thin film transistor (TFT) and a method of driving the same are disclosed. The TFT includes: an active layer; a bottom gate electrode disposed below the active layer to drive a first region of the active layer; and a top gate electrode disposed on the active layer to drive a second region of the active layer. The TFT controls the conductivity of the active layer by using the bottom gate electrode and the top gate electrode.
Abstract:
Provided is a micro-lens capable of changing a focal length. The micro-lens includes a plurality of electrodes, and an electrowetting liquid layer that is separable from the electrodes and that has a focal length that is controlled by a voltage applied to the electrodes.
Abstract:
A variable optical device array includes: a transparent substrate; an addressing layer including an electrode wire arranged on the transparent substrate; a barrier wall portion disposed on the addressing layer to define cell regions and including conductive barrier walls that are electrically connected to the electrode wire, wherein pairs of the conductive barrier walls are arranged to form double walls; an insulation material filling a region between each pair of conductive barrier walls; a conductive first fluid and a nonconductive second fluid disposed in each of the cell regions, wherein the first and second fluids are not mixed; an insulation coating layer disposed on a top surface of each of the conductive barrier walls and on side surfaces of each of the cell regions; a transparent electrode layer covering the cell regions; and a voltage applying unit to apply a voltage between the transparent electrode layer and the addressing layer.
Abstract:
A field effect transistor (FET) includes first and second channels stacked on a substrate, the first and second channels formed of a transition metal dichalcogenide, a source electrode and a drain electrode contacting both the first channel and the second channel, each of the source electrode and the drain electrode having one end between the first channel and the second channel, and a first gate electrode corresponding to at least one of the first channel and the second channel.