Abstract:
Provided are an electrowetting prism device which has increased an aperture ratio by simplifying an electrode and wiring structure, and a 3D image display apparatus capable of providing a super multi-view 3D image using the electrowetting prism device. The electrowetting prism device includes lower and upper transparent substrates disposed against each other, a vertical wall mounted on the lower transparent substrate so as to form a diamond-shaped space, a first electrode arranged along two adjacent sidewalls of the vertical wall, a second electrode arranged along the other remaining two adjacent sidewalls of the vertical wall to be disposed against the first electrode, and a non-polarized liquid and a polarized liquid arranged within a space surrounded by the vertical wall.
Abstract:
Provided are an integral imaging type 3-dimensional (3D) image display apparatus and a 3D image pickup apparatus for increasing a depth by using an electrowetting lens array. The 3D image display apparatus includes a display panel and an electrowetting lens array having an electrically adjustable variable focal distance. The 3D image display apparatus displays a plurality of images having different depths on different focal planes and thus a depth of a 3D image by using one display panel.
Abstract:
Provided is a micro-lens capable of changing a focal length. The micro-lens includes a plurality of electrodes, and an electrowetting liquid layer that is separable from the electrodes and that has a focal length that is controlled by a voltage applied to the electrodes.
Abstract:
Provided is a technology for controlling an electrowetting cell. The electrowetting cell may be controlled by applying a preset first voltage to the electrowetting cell, measuring a first circuit parameter between any one side surface and a conductive liquid disposed in the electrowetting cell and determining whether a reset second voltage is to be applied to the electrowetting cell based on the measured first circuit parameter.
Abstract:
A display including an electrowetting prism array is provided. The display includes: a light source, a 2-dimensional (2D) display for providing an image using light from the light source, a prism array in which a refractive power of one or more prisms of the prism array is adjustable in real time, and an optical element which increases a refraction of light transmitted therethrough. In the display, the optical element may be disposed in front of or behind the prism array. The optical element may be a convex lens, a Fresnel lens, a holographic optical element (HOE), a diffraction optical element (DOE), or a second electrowetting prism array. The convex lens may be a variable focus lens.
Abstract:
A 3-dimensional (3D) holographic image displaying apparatus is provided. The apparatus includes a hologram reproducer configured to generate surface plasmons in response to incident light and reproduce a 3D image by diffracting the generated surface plasmons by a hologram, and a surface light source unit including a light source and a light guide plate, the light guide plate being configured to allow incident light from the light source to enter into the light guide plate, internally reflect the allowed light, and output the internally reflected light through a light-output surface, the surface light source unit being configured to implement colors by adjusting an angle of the light incident to the hologram reproducer so that the outputted light through the light-output surface is incident to the hologram reproducer at a surface plasmon-forming angle for each wavelength to generate the surface plasmons corresponding to a plurality of color beams.
Abstract:
A complex spatial light modulator includes a polarization-phase modulator for separating an incident beam into a first beam having a first polarization and a first phase, and a second beam having a second polarization and a second phase, and for outputting the first beam and the second beam; and a beam synthesizer including a prism structure formed of an optical anisotropic material having a first refractive index with respect to the first beam having the first polarization and having a second refractive index, different form the first refractive index, with respect to the second beam having the second polarization, where the beam synthesizer combines the first beam and the second beam.
Abstract:
A surface light source device is provided. The surface light source device includes a light source, a beam splitter configured to split a light irradiated from the light source into a plurality of light beams each having a different path, a diffusion unit configured to diffuse the plurality of light beams split by the beam splitter into a surface light, and a collimating unit configured to arrange the plurality of light beams diffused from the diffusion unit in one direction.