Abstract:
A photographing method, medium, and apparatus based on face detection in a portable camera. The portable photographing apparatus may include an image input unit that receives an image, a face detection unit that detects a face from the received image, a storage unit that stores the image detected by the face detection unit as a moving image in a first mode, and a quality evaluation unit that evaluates the quality of the image detected by the face detection unit and stores the same as a still image in a second mode upon satisfaction of predetermined conditions evaluated based on the quality evaluation of the still image.
Abstract:
A method of medical image registration includes obtaining a first medical image generated before a medical surgery; obtaining a second medical image generated in real time during the medical surgery; extracting landmark points of at least two adjacent anatomical objects recognizable in the second medical image among a plurality of anatomical objects near an organ of interest of a patient from the first medical image and the second medical image; and registering the first medical image and the second medical image based on a geometrical correlation among the adjacent anatomical objects indicated by the landmark points of the first medical image and a geometrical correlation among the adjacent anatomical objects indicated by the landmark points of the second medical image.
Abstract:
A method, an apparatus, a computer readable recording medium, and a medical imaging system are provided for segmenting an image of an object from an image of an organ. The method includes: generating a reference model of the object by using a priori knowledge related to the object of the organ; determining whether the first image includes a first area in which a shape of the object is unidentified; and in response to determining that the first image excludes the first area, segmenting a second image of the object from the first image, and in response to determining that the first image includes the first area, estimating a progression direction of the first area from the reference model to segment the second image from the first image.
Abstract:
Disclosed are a method and apparatus for registering images having different modalities. The medical image registration method includes performing, at an initial register, multi-modality registration of a reference image from a plurality of first images captured during a first breathing period and a second image; performing, at the initial register, single-modality registration of the reference image and each of the other first images; generating registration images between the plurality of first images and the second image based on the multi-modality registration and the single-modality registration; acquiring a third image captured after the first breathing period; and detecting an image corresponding to the third image from the registration images.
Abstract:
A method of medical image registration includes obtaining a first medical image generated before a medical surgery; obtaining a second medical image generated in real time during the medical surgery; extracting landmark points of at least two adjacent anatomical objects recognizable in the second medical image among a plurality of anatomical objects near an organ of interest of a patient from the first medical image and the second medical image; and registering the first medical image and the second medical image based on a geometrical correlation among the adjacent anatomical objects indicated by the landmark points of the first medical image and a geometrical correlation among the adjacent anatomical objects indicated by the landmark points of the second medical image.
Abstract:
A method of medical image registration with respect to a volume of interest (VOI) and an apparatus for performing the method are provided. In one embodiment, the method includes obtaining a first medical image of a selected section of the VOI, from a first medical apparatus, detecting a sectional image corresponding to the selected section from second medical images previously captured of the VOI, based on an anatomical feature appearing in the first medical image, mapping virtual coordinate schemes of the first and second medical images to produce a mapped virtual coordinate scheme, based on the detected sectional image and the first medical image, and tracking a movement of a section of the VOI captured by the first medical apparatus in the second medical images by using a mapped virtual coordinate scheme.
Abstract:
A method and apparatus for tracking an object, and a method and apparatus for calculating object pose information are provided. The method of tracking the object obtains object feature point candidates by using a difference between pixel values of neighboring frames. A template matching process is performed in a predetermined region having the object feature point candidates as the center. Accordingly, it is possible to reduce a processing time needed for the template matching process. The method of tracking the object is robust in terms of sudden changes in lighting and partial occlusion. In addition, it is possible to track the object in real time. In addition, since the pose of the object, the pattern of the object, and the occlusion of the object are determined, detailed information on action patterns of the object can be obtained in real time.
Abstract:
Provided is a method of generating a model, the method including generating a first model representing a change in the location or the shape of the region of interest during the respiration cycle, using diagnostic images that are obtained at two points of time in the respiration cycle and that represent the region of interest; extracting shape information of one or more tissues included in the region of interest at a shape information extractor, using a 3D ultrasound image that is obtained at one point of time in the respiration cycle; determining a characteristic point of the 3D ultrasound image corresponding to a characteristic point of the first model by matching the first model with the extracted shape information; and generating a second model by updating the first model with the determined characteristic point.
Abstract:
Provided is a method and apparatus for tracking a tumor position, which changes by the movement of a body. According to various aspects, a location of a tumor position of a target organ may be estimated using images of one or more surrounding organs.
Abstract:
A method and apparatus for performing registration of medical images includes mapping a virtual coordinate system used by a first medical apparatus and a virtual coordinate system used by a second medical apparatus to one another. The coordinate systems are associated with a real-time medical image captured by the first medical apparatus and a three-dimensional (3D) medical image previously captured by the second medical apparatus, respectively. The method further includes detecting a position of a probe of the first medical apparatus from a coordinate system used by the second medical apparatus, based on a result of the mapping, determining a volume image corresponding to the detected position of the probe from the previously captured 3D medical image, and extracting from the determined volume image a cross-sectional image corresponding to the real-time medical image, where the real-time medical image changes according to a patient's physical movement.