Abstract:
Methods and electronic devices for managing information context among devices. The method includes switching from displaying information of a first application to displaying information of a second application. The method also includes identifying information of the first application that is relevant to the second application. The relevant information includes at least a portion of the displayed information of the first application. Additionally, the method includes sending an indication of the relevant information to a second electronic device for display of the relevant information at the second electronic device. The method may also include, while displaying the information of the second application, receiving input information from the second electronic device. The input information may include at least a portion of the relevant information displayed at the second electronic device. Additionally, the method may include using the input information in the second application.
Abstract:
For an O-RAN system, supported hybrid beamforming configurations are indicated based on a number of analog ports, a number of digital ports, a number of analog ports per transceiver, and supported codebooks. A hybrid beamforming configuration to be employed includes control bit vectors for phase-shifters, each control bit vector mapped to a phase value, an in-phase (I) value and a quadrature (Q) value. The hybrid beamforming configuration may include analog and digital beamforming parameters applicable to frequency bands or subbands or joint phase-time array parameters.
Abstract:
A wearable device is provided for authentication that includes a memory element and processing circuitry coupled to the memory element. The memory element configured to store a plurality of user profiles. The processing circuitry is configured to identify a pairing between the wearable device and a device. The processing circuitry is configured to identify a user of the wearable device. The processing circuitry also is configured to determine if the identified user matches a profile of the plurality of user profiles. The processing circuitry is also configured to responsive to the identified user matching the profile, determine if the profile provides authorization to access the device. The processing circuitry is also configured to responsive to the profile providing authorization to the device, send a message to the device authorizing access to the device.
Abstract:
An electronic device includes a Lidar sensor, a radar sensor, and a processor. The processor is configured to identify one or more objects from Lidar scans. The processor is configured to transmit, via the radar sensor, radar signals for object detection based on reflections of the radar signals received by the radar sensor. While the electronic device travels the area, the processor is configured to generate a first map indicating one or more objects within an area based on the Lidar scans and a second map based on the radar signals. The processor is configured to determine whether the second map indicates a missed object at the portion of the first map that is unoccupied. In response to a determination that the second map indicates the missed object, the processor is configured to modify the first map with the missed object.
Abstract:
An electronic device, method, and computer readable medium for accurate, low latency pose fusion architecture for SLAM are provided. The electronic device includes an IMU sensor, a camera, a display, and a processor coupled to the IMU sensor, the camera, and the display. The processor determines a vision pose in a camera coordinate based on the captured vision data; transforms the vision pose from the camera coordinate to an IMU coordinate; applies a scale factor, based on a combination of the vision pose and an IMU pose in the IMU coordinate, to the vision pose; fuses the scaled vision pose and the IMU pose into a fused pose in a temporally distributed manner; and outputs the fused pose for use with the display.
Abstract:
An electronic device, method, and computer readable medium for accurate, low latency pose fusion architecture for SLAM are provided. The electronic device includes an IMU sensor, a camera, a display, and a processor coupled to the IMU sensor, the camera, and the display. The processor determines a vision pose in a camera coordinate based on the captured vision data; transforms the vision pose from the camera coordinate to an IMU coordinate; applies a scale factor, based on a combination of the vision pose and an IMU pose in the IMU coordinate, to the vision pose; fuses the scaled vision pose and the IMU pose into a fused pose in a temporally distributed manner; and outputs the fused pose for use with the display.
Abstract:
Methods and electronic devices for managing information context among devices. The method includes switching from displaying information of a first application to displaying information of a second application. The method also includes identifying information of the first application that is relevant to the second application. The relevant information includes at least a portion of the displayed information of the first application. Additionally, the method includes sending an indication of the relevant information to a second electronic device for display of the relevant information at the second electronic device. The method may also include, while displaying the information of the second application, receiving input information from the second electronic device. The input information may include at least a portion of the relevant information displayed at the second electronic device. Additionally, the method may include using the input information in the second application.
Abstract:
An electronic device includes a Lidar sensor, a radar sensor, and a processor. The processor is configured to identify one or more objects from Lidar scans. The processor is configured to transmit, via the radar sensor, radar signals for object detection based on reflections of the radar signals received by the radar sensor. While the electronic device travels the area, the processor is configured to generate a first map indicating one or more objects within an area based on the Lidar scans and a second map based on the radar signals. The processor is configured to determine whether the second map indicates a missed object at the portion of the first map that is unoccupied. In response to a determination that the second map indicates the missed object, the processor is configured to modify the first map with the missed object.
Abstract:
A wearable device is provided for authentication that includes a memory element and processing circuitry coupled to the memory element. The memory element configured to store a plurality of user profiles. The processing circuitry is configured to identify a pairing between the wearable device and a device. The processing circuitry is configured to identify a user of the wearable device. The processing circuitry also is configured to determine if the identified user matches a profile of the plurality of user profiles. The processing circuitry is also configured to responsive to the identified user matching the profile, determine if the profile provides authorization to access the device. The processing circuitry is also configured to responsive to the profile providing authorization to the device, send a message to the device authorizing access to the device.