摘要:
A temperature sensor having calibration function according to temperature, a method of operating the same, and a device including the same are provided. The temperature sensor includes a reference circuit configured to generate at least one temperature information signal that varies according to a temperature, and generate at least one reference signal that is substantially constant relative to the temperature; and a digital temperature generator configured to receive the at least one temperature information signal and the at least one reference signal generated by the reference circuit, and generate a digital temperature information signal indicative of the temperature based on the at least one temperature information signal and the at least one reference signal, wherein one of the reference circuit and the digital temperature generator is configured to receive a calibration signal and adjust the at least one reference signal based on the calibration signal.
摘要:
A method for manufacturing a separator includes (S1) preparing a porous substrate having pores, (S2) coating at least one surface of the porous substrate with a first solvent, (S3) coating the first solvent with a slurry containing inorganic particles dispersed therein and formed by dissolving a binder polymer in a second solvent, (S4) drying the first and second solvents simultaneously to form a porous organic-inorganic composite layer on the porous substrate. Since the phenomenon that the pores of the porous substrate are closing by the binder polymer is minimized, it is possible to prevent the resistance of the separator from increasing due to the formation of the porous organic-inorganic composite layer.
摘要:
Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and sequentially coating the slurry on the porous substrate through a first discharge hole and a non-solvent incapable of dissolving the second binder polymer on the slurry through a second discharge hole adjacent to the first discharge hole, and (S3) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.