摘要:
The present invention is directed to structures and fabrication methods used to construct an improved shallow trench isolation structure are disclosed. The method involves providing a semiconductor substrate having a shallow isolation trench. The trench is implanted with oxygen to form an implanted region at the bottom of the trench. The trench is filled with dielectric materials. The substrate is planarized and then annealed to complete formation of the isolation structure. A structure having an improved isolation structure is also disclosed. The structure comprises a substrate configured to include a shallow trench that is filled with dielectric material. An insulating extension is formed by oxygen implantation of the regions underlying the shallow trench.
摘要:
The present invention is directed to a method of fabricating a local interconnect. A disclosed method involves forming two separate cavities in the ILD above two electrical contacts of a transistor. A first cavity extend down to an underlying etch stop layer. The first cavity is then filled with a protective layer. The second cavity is then formed adjacent to the first cavity and extends down to expose the underlying etch stop layer. The protective layer is removed to form an expanded cavity including the first and second cavities which expose the underlying etch stop layer in the expanded cavity. The etch stop material in the expanded cavity is also removed to expose an underlying gate contact and expose one of a source or drain contact. The gate contact is then electrically connected with one of the exposed source or drain contacts to form a local interconnect.
摘要:
Fabrication of electronic devices in the “metal layers” of semiconductor devices. Each metal layer includes a dielectric layer that supports a conductive layer, which includes electrically conductive pathways and electronic devices. The metal layers are stacked on top of each other such that the dielectric layers separate the adjacent conductive layers. The electronic devices may be passive devices such as resistors. The resistors are formed by depositing metal onto the dielectric layer and then implanting the metal with oxygen. The conductive layer may be formed of materials such as copper and aluminum.
摘要:
Fabrication of electronic devices in the “metal layers” of semiconductor devices. Each metal layer includes a dielectric layer that supports a conductive layer, which includes electrically conductive pathways and electronic devices. The metal layers are stacked on top of each other such that the dielectric layers separate the adjacent conductive layers. The electronic devices may be passive devices such as resistors. The resistors are formed by depositing metal onto the dielectric layer and then implanting the metal with oxygen. The conductive layer may be formed of materials such as copper and aluminum.
摘要:
A method of detecting potential failures from a corrected mask design for an integrated circuit includes steps of receiving as input a corrected mask design for an integrated circuit, searching the corrected mask design to find a critical edge of a polygon that is closer than a selected minimum distance from a polygon edge opposite the critical edge, constructing a critical region bounded by the critical edge and the polygon edge opposite the critical edge, comparing the critical region to a potential defect criterion, and generating as output a location of the critical region when the critical region satisfies the potential defect criterion.
摘要:
A method of detecting potential failures from a corrected mask design for an integrated circuit includes steps of receiving as input a corrected mask design for an integrated circuit, searching the corrected mask design to find a critical edge of a polygon that is closer than a selected minimum distance from a polygon edge opposite the critical edge, constructing a critical region bounded by the critical edge and the polygon edge opposite the critical edge, comparing the critical region to a potential defect criterion, and generating as output a location of the critical region when the critical region satisfies the potential defect criterion.