摘要:
Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices).
摘要:
A sacrificial coating material includes: at least one inorganic compound, and at least one material modification agent, wherein the sacrificial coating material is dissolvable in an alkaline-based chemistry or a fluorine-based chemistry. A method of producing a sacrificial coating material includes: providing at least one inorganic compound, providing at least one material modification agent, combining the at least one inorganic compound with the at least one material modification agent to form the sacrificial coating material, wherein the sacrificial coating material is dissolvable in an alkaline-based chemistry or a fluorine-based chemistry, but not organic casting solvents commonly used in organic BARC materials.
摘要:
Silsesquioxane resins useful in forming the antireflective coating having the formula (PhSiO(3-x)/2(OH)x)mHSiO(3-x)/2(OH)x)n(MeSiO(3-x)/2(OH)x)p(RSiO(3-x)/2(OH)x)q where Ph is a phenyl group, Me is a methyl group, R is selected from ester groups and polyether groups, x has a value of 0, 1 or 2; m has a value of 0.05 to 0.95, n has a value of 0.05 to 0.95, p has a value of 0.05 to 0.95, q has a value of 0.01 to 0.30 and m+n+p+q≈1.
摘要翻译:可用于形成具有式(PhSiO(3-x)/ 2(OH)x)mHSiO(3-x)/ 2(OH)x)n(MeSiO(3-x)/ 2(OH))的抗反射涂层的倍半硅氧烷树脂 )x)p(RSiO(3-x)/ 2(OH)x)q其中Ph是苯基,Me是甲基,R选自酯基和聚醚基团,x的值为0,1 或2; m的值为0.05〜0.95,n为0.05〜0.95,p为0.05〜0.95,q为0.01〜0.30,m + n + p +q≈1。
摘要:
A method of forming a multi-layered insulation film includes forming a first insulation layer using a first feed gas, the first insulation layer including methyl silsesquioxane (MSQ), forming a second insulation layer using a second feed gas, the second insulation layer including a polysiloxane compound having an Si—H group such that the second insulation layer is in contact with a top of the first insulation layer, and forming a third insulation layer including an inorganic material such that the third insulation layer is in contact with a top of the second insulation layer.
摘要:
A method of forming a multi-layered insulation film includes forming a first insulation layer using a first feed gas, the first insulation layer including methyl silsesquioxane (MSQ), forming a second insulation layer using a second feed gas, the second insulation layer including a polysiloxane compound having an Si—H group such that the second insulation layer is in contact with a top of the first insulation layer, and forming a third insulation layer including an inorganic material such that the third insulation layer is in contact with a top of the second insulation layer.
摘要:
Disclosed is a semiconductor device with a flowable insulation layer formed on a capacitor and a method for fabricating the same. Particularly, the semiconductor device includes: a capacitor formed on a predetermined portion of a substrate; an insulation layer formed by stacking a flowable insulation layer and an undoped silicate glass layer on a resulting substrate structure including the substrate and the capacitor; and a metal interconnection line formed on the insulation layer. The method includes the steps of: forming a capacitor on a predetermined portion of a substrate; forming an insulation layer by stacking a flowable insulation layer and an undoped silicate glass layer on a resulting substrate structure including the substrate and the capacitor; and forming a metal interconnection line on the insulation layer.
摘要:
Methods for preparing nanocrystalline-Si/SiO2 composites by treating hydrogen silsesquioxane (HSQ) under reductive thermal curing conditions are described. Also described are methods of preparing silicon nanoparticles by acid etching the nanocrystalline-Si/SiO2 composites.
摘要:
A processing method according to the present invention coats a polar liquid film or forms an inorganic film on a surface of an organic film formed on a substrate as a protective film. The processing method comprises a modifying step of curing an organic film by irradiating the organic film with electron beams by means of an electron-beam irradiation device in a rare gas atmosphere, and an applying step of applying a polar liquid to the modified surface of the organic film or a film forming step of forming an inorganic film on the organic film. The organic film is cured and affinity for the polar liquid or the inorganic film is imparted to the organic film.
摘要:
Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices).
摘要:
The present invention provides improvements to the use of silyating agents in semiconductor processing. More particularly, the silyating agents may be provided in combination with a substantially non-flammable ether, so that the combination is substantially non-flammable. Additionally, the silyating agent may be utilized in vapor form, or applied in conjunction with the electromagnetic radiation. Each of these embodiments can enhance the usability of the silyating agent, i.e., by rendering the silyating agent more safe, more easily utilized in a variety of processing equipment and/or by enhancing the passivation efficacy/efficiency of the silyating agent.