Abstract:
Apparatus and method for detecting media defects using a multi-sensor transducer. In some embodiments, a first pattern is written to a first track on a rotatable storage media and a second pattern is written to a second track on the media. A first read sensor of a multi-sensor transducer senses the first pattern from the first track and a second read sensor of the multi-sensor transducer concurrently senses the second pattern from the second track. At least one storage media defect is detected responsive to the sensed first and second patterns.
Abstract:
Technologies are described herein for implementing modulation coding schemes for TDMR. A data sequence is received to be stored on a first data track of a recording media. The first data sequence is encoded into a first codeword sequence using a modulation coding scheme, and the first codeword sequence is written to the first data track of the recording media. Subsequently, a second data sequence is received to be stored on a second data track of the recording media, the second data track being adjacent to the first data track. A second codeword sequence is generated for the second data sequence based on the first codeword sequence on the first data track, and the second codeword sequence is written to the second data track of the recording media.
Abstract:
Apparatus and method for detecting media defects using a multi-sensor transducer. In some embodiments, a first pattern is written to a first track on a rotatable storage media and a second pattern is written to a second track on the media. A first read sensor of a multi-sensor transducer senses the first pattern from the first track and a second read sensor of the multi-sensor transducer concurrently senses the second pattern from the second track. At least one storage media defect is detected responsive to the sensed first and second patterns.
Abstract:
The defined architecture allows for format-efficient data storage on bit-patterned media, while allowing for typical variations in the drive, such as reader to writer gap variations. The defined BPM architecture relaxes some timing requirements on real-time signaling from the formatter to the channel, while enabling bit-accurate alignment between data accesses and the media.
Abstract:
The defined architecture allows for format-efficient data storage on bit-patterned media, while allowing for typical variations in the drive, such as reader to writer gap variations. The defined BPM architecture relaxes some timing requirements on real-time signaling from the formatter to the channel, while enabling bit-accurate alignment between data accesses and the media.
Abstract:
A data format that allows for format-efficient data storage, particularly on bit-patterned media. The data format uses an intersector gap that is dimensioned relative to a physical dimension of a transducer. Further described is a data storage medium comprising transducer overhead, such as an intersector gap, interleaved with fragment overhead. Also described is a storage medium comprising intersector gaps that each include a write splice and extra symbols.
Abstract:
An apparatus and associated methodology providing read channel circuitry having a signal equalizer that sends an equalized signal to a bit detector. The read channel circuitry is capable of sampling values of the equalized signal to identify a bit transition from among a predefined plurality of different bit transitions. The apparatus may have channel optimization (CO) logic that, based on the input signal and the sampling of the equalized signal, defines first values for a programmable parameter of the bit detector that substantially maximizes vector separations among vectors of waveform target samples corresponding to the predefined plurality of different bit transitions, while the CO logic also defines second values for a programmable parameter of the equalizer that substantially minimizes the mean squared separation of the equalized signal segment for each bit transition from the waveform target corresponding to that bit transition.
Abstract:
The disclosure is related to systems and methods for achieving improved servo Gray code error detection and correction. A device may include a circuit configured to read servo data that is encoded using a Gray code encoding scheme to produce servo Gray code, read one or more Check bits associated with the servo Gray code, determine whether a read or write head is positioned over a target data track based on the servo Gray code and the one or more Check bits, and execute a read or write operation when the read or write head is positioned over the target data track.
Abstract:
A readback signal from a first reader and a readback signal from a second reader are received, the first reader and the second reader configured to read two-dimensional data from at least one track of a recording media. A quality metric of the second reader is measured based on the readback signal. It is determined if the quality metric for the second reader is above a threshold. If the quality metric is above the threshold, the first reader and the second reader are used to read the data.
Abstract:
Data format that allows for format-efficient data storage, particularly on bit-patterned media. The data format allows for variations in the data storage device, such as reader-to-writer gap variations. A medium can also have at least a pair of a synchronization field and a quiet field with a length greater than a length of the synchronization field. These can be implemented in a bit patterned media system.