Abstract:
Devices that have an air bearing surface (ABS), the device includes a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein the disc includes a disc material that includes gold or an alloy thereof and the peg includes a peg material, wherein the disc material is different from the peg material and wherein the peg material has a real part of the permittivity that is not greater than that of gold.
Abstract:
Devices having an air bearing surfaces (ABS), the devices including a near field transducer (NFT) that includes a disc having a front edge; a peg, the peg having a front surface at the air bearing surface of the apparatus, an opposing back surface, a top surface that extends from the front surface to the back surface, two side surfaces that expend from the front surface to the back surface and a bottom surface that extends from the front surface to the back surface; and a barrier layer, the barrier layer separating at least the back surface of the peg from the disc and the barrier layer having a thickness from 10 nm to 50 nm.
Abstract:
Devices having air bearing surfaces (ABS), the devices including a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein at least one of a portion of the peg, a portion of the disc, or a portion of both the peg and the disc include a multilayer structure including at least two layers including at least one layer of a first material and at least one layer of a second material, wherein the first material and the second material are not the same and wherein the first and the second materials independently include aluminum (Al), antimony (Sb), bismuth (Bi), boron (B), barium (Ba), calcium (Ca), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), erbium (Er), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), indium (In), iridium (Ir), iron (Fe), lanthanum (La), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), niobium (Nb), osmium (Os), palladium (Pd), platinum (Pt), rhenium (Re), rhodium (Rh), ruthenium (Ru), scandium (Sc), silicon (Si), silver (Ag), strontium (Sr), tantalum (Ta), thorium (Th), tin (Sn), titanium (Ti), vanadium (V), tungsten (W), ytterbium (Yb), yttrium (Y), zirconium (Zr), or combinations thereof.
Abstract:
Methods of forming a NFT the methods including forming a hard mask positioned over at least a portion of the rod, the hard mask including at least one layer; patterning a resist mask over the hard mask, the resist mask having an edge positioned over at least a portion of the rod; etching a portion of the hard mask to expose a back edge of the rod and to form a back edge of the hard mask, wherein the back edge of the rod is equivalent to the back edge of the peg; and wherein a forward portion of the rod which is the portion of the rod forward of the back edge is covered by the hard mask; forming a disc mask including a void configured to form a disc of a NFT, the disc mask being formed over at least a portion of the hard mask so that the exposed back edge of the rod is within the void configured to form the disc; etching an area exposed in the void of the disc mask to remove both a rear portion of the rod and the surrounding dielectric up to the back edge of the hard mask edge; depositing a disc material in the etched void, wherein the back edge of the hard mask defines the front edge of the disc and the back edge of the rod is in contact with the front edge of the disc; and polishing the deposited disc material to form a top surface substantially planar with the top of the forward rod portion.
Abstract:
Devices having an air bearing surface (ABS), the devices including a write pole; a near field transducer (NFT) that includes a peg and a disc, wherein the peg is at the ABS of the device; a heat sink positioned adjacent the disc of the NFT; a dielectric gap positioned adjacent the peg of the NFT at the ABS of the device; and a conformal diffusion barrier layer positioned between the write pole and the dielectric gap, the disc, and the heat sink, wherein the conformal diffusion barrier layer forms at least one angle that is not greater than 135°.
Abstract:
Systems and methods for adding a cap-layer to magnetic recording media are described. In one embodiment, the method may include depositing a magnetic recording layer over a substrate, depositing an interface layer over the magnetic recording layer, and depositing a carbon overcoat layer over the interface layer. In some cases, sputter deposition is used to deposit at least the interface layer. In some cases, oxygen is used as a background gas of the sputter deposition.
Abstract:
Heat assisted magnetic recording (HAMR) devices that includes a near field transducer, the near field transducer including alloys of a first element selected from: platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os); and a second element selected from; hafnium (Hf), niobium (Nb), tantalum (Ta), titanium (Ti), vanadium (V), and zirconium (Zr).
Abstract:
Devices having air bearing surfaces (ABS), the devices including a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein at least one of a portion of the peg, a portion of the disc, or a portion of both the peg and the disc include a multilayer structure including at least two layers including at least one layer of a first material and at least one layer of a second material, wherein the first material and the second material are not the same and wherein the first and the second materials independently include aluminum (Al), antimony (Sb), bismuth (Bi), boron (B), barium (Ba), calcium (Ca), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), erbium (Er), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), indium (In), iridium (Ir), iron (Fe), lanthanum (La), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), niobium (Nb), osmium (Os), palladium (Pd), platinum (Pt), rhenium (Re), rhodium (Rh), ruthenium (Ru), scandium (Sc), silicon (Si), silver (Ag), strontium (Sr), tantalum (Ta), thorium (Th), tin (Sn), titanium (Ti), vanadium (V), tungsten (W), ytterbium (Yb), yttrium (Y), zirconium (Zr), or combinations thereof.
Abstract:
Methods of forming a NFT the methods including forming a hard mask positioned over at least a portion of the rod, the hard mask including at least one layer; patterning a resist mask over the hard mask, the resist mask having an edge positioned over at least a portion of the rod; etching a portion of the hard mask to expose a back edge of the rod and to form a back edge of the hard mask, wherein the back edge of the rod is equivalent to the back edge of the peg; and wherein a forward portion of the rod which is the portion of the rod forward of the back edge is covered by the hard mask; forming a disc mask including a void configured to form a disc of a NFT, the disc mask being formed over at least a portion of the hard mask so that the exposed back edge of the rod is within the void configured to form the disc; etching an area exposed in the void of the disc mask to remove both a rear portion of the rod and the surrounding dielectric up to the back edge of the hard mask edge; depositing a disc material in the etched void, wherein the back edge of the hard mask defines the front edge of the disc and the back edge of the rod is in contact with the front edge of the disc; and polishing the deposited disc material to form a top surface substantially planar with the top of the forward rod portion.
Abstract:
Devices having air bearing surfaces (ABS), the devices include a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein the disc includes a disc material and the peg includes a peg material, wherein the disc material is different from the peg material and wherein the disc material has a first real part of the permittivity and a peg material has a second real part of the permittivity and the second real part of the permittivity is not greater than the first real part of the permittivity.