摘要:
This magnetic head, which reads and writes magnetic information, prevents a signal from being read between the magnetic head and the write circuit during reading of magnetic information. A card reader 1 is provided with a magnetic head 6 which reads and writes magnetic information. Bidirectional diodes 54A, 54B are arranged inside of a head case 21 of the magnetic head 6. A write signal from a write circuit 72 is inputted via the bidirectional diodes 54A, 54B to a writing coil 34 wound around a core 32 of the magnetic head 6. The bidirectional diodes 54A, 54B and a demodulation IC 61 are mounted on a first board surface 62A of a control circuit board 62, and the control circuit board 62 is fixed to the head case 21 so that the bidirectional diodes 54A, 54B and the demodulation IC 61 are covered by the head case 21.
摘要:
In accordance with one embodiment, a method may be implemented by depositing a non-magnetic gap layer of material above a main pole layer of magnetic material; depositing a sacrificial layer of material above the non-magnetic gap layer of material; etching a portion of the sacrificial layer of material while not entirely removing the sacrificial layer of material; and depositing additional sacrificial material to the etched sacrificial layer.
摘要:
A method for fabricating a magnetic recording transducer is described. The method includes providing a pinned layer for a magnetic element. The portion of the magnetic transducer including the pinned layer is transferred to a high vacuum annealing apparatus before annealing the magnetic transducer. The portion of the magnetic recording transducer is annealed in the high vacuum annealing apparatus. A tunneling barrier is provided after the step of annealing the part of the magnetic recording transducer. A free layer for the magnetic element is also provided.
摘要:
A thermally-assisted magnetic write head includes a waveguide, a magnetic pole, and a plasmon generator interposed between the waveguide and the magnetic pole. The magnetic pole includes a first surface exposed on an air bearing surface, a second surface facing the plasmon generator, and a third surface connecting the first surface and the second surface.
摘要:
Aspects of the present invention relate to energy-assisted magnetic recording (EAMR), an EAMR assembly, and methods for fabricating the same. In several embodiments, an EAMR head includes a sub-mount on a slider that has a waveguide configured to receive light from a light source attached to a surface of the sub-mount. The waveguide receives the light at a top surface of the slider and routes the light to be near an air bearing surface (ABS) of the slider where energy of the light can be used to heat up a spot on a recording media disk that is proximate the ABS. The waveguide also routes a portion of the light back to the top surface of the slider where the light exits the waveguide and is detected by a light detector located along the surface of the sub-mount.
摘要:
A write head and a method for forming the write head. The method includes providing a first pole and a second pole for the write head. The first pole and the second pole are formed from a ferromagnetic material. Regions of the write head including at least a portion of at least one of the first pole and the second pole of the write head are volumetrically doped with a dopant material selected from one of a 4d transition metal, 5d transition metal, and 4f rare earth metal. The dopant material is predetermined to provide a magnetic damping in the doped regions which is greater than the magnetic damping in the ferromagnetic material.
摘要:
A method of manufacturing a thin-film magnetic head, the thin-film magnetic head including a magnetoresistive element, first and second shield layers for shielding the magnetoresistive element, a first shield gap film provided between the magnetoresistive element and the first shield layer, and a second shield gap film provided between the magnetoresistive element and the second shield layer. The method includes the steps of forming the first shield layer, forming the first shield gap film on the first shield layer, forming the magnetoresistive element on the first shield gap film, forming the second shield gap film on the magnetoresistive element, and forming the second shield layer on the second shield gap film. At least one of the first and second shield gap films is formed by stacking a plurality of insulating films formed by chemical vapor deposition.
摘要:
A method for creating a write element of a magnetic head according to one embodiment includes forming a first pole pedestal; forming a write gap layer above the first pole pedestal; forming a second pole pedestal above the write gap layer; and forming at least one of: a cap layer of CoFeON between the first pole pedestal and the write gap, and a seed layer of CoFeON between the write gap layer and the second pole pedestal. Note that other layers may be interspersed between those set forth here.
摘要:
Disclosed are a thin film magnetic head that has a recoding coil and a method of forming a recording coil can sufficiently achieve a cross-sectional area of the coil and reduce coil resistance. A recording coil of a thin film magnetic head is formed as follows. First, frames, which divide a coil forming area, are formed on the plating base film for forming a coil. Further, the plating base film exposed between the frames is etched, and etching rebounds the plating base film are re-attached to a frame side wall. Then, a nonmagnetic metal layer is formed by plating on the area divided by the frames. Accordingly, the recording coil that has a thickness at both end portions in a coil width direction that is larger than that of a central portion thereof is obtained.
摘要:
A wire gap film is formed on a flat coplanar surface formed on a bottom pole by a bottom track pole and a thin film coil, first and second magnetic material films constituting a top pole are formed on a flat surface of the thin film coil, and the first and second magnetic material films, write gap film and bottom track pole are partially removed forming a top track pole and trim structure. The thin film coil is formed by first and second thin film coil halves having self-aligned coil windings and have a CVD formed first conductive film, and an electrolytic plating formed second conductive film. A thin insulating film is interposed between successive coil windings of the first and second thin film coil halves. Jumper wirings, formed with the top pole, connect innermost and outermost coil windings of the first and second thin film coil halves respectively.