Abstract:
A vehicle seat includes a load sensor for measuring a load applied from an occupant and a seat cushion frame, wherein the seat cushion frame comprises right and left side frames extending in a front-and-rear direction, the load sensor is attached to the seat cushion frame, and a concave portion is formed in at least one of the right and left side frames at a position opposite to the load sensor.
Abstract:
An upper rail is movable in a rear and front direction with respect to a lower rail fixed to a vehicle floor. A load sensor is fixed to an upper surface of the upper rail, and a rectangular frame is attached onto the load sensor. A rod of the load sensor penetrates a web of the rectangular frame, a washer and a spring holder, and a coil spring is wound around the rod. A bush is fitted to an edge of a hole of the washer, and a step is formed between an upper surface of the washer and the bush. A nut is screwed to the rod and tightens a bottom of a cup portion of the spring holder. The coil spring is sandwiched between the spring holder and the web and is compressed, and an end portion of the coil spring engages with the step.
Abstract:
A lower rail is fixed to a vehicle floor, and an upper rail is movable in a rear and front direction with respect to the lower rail. A load sensor is fixed to an upper surface of the upper rail. A rectangular frame is attached onto the load sensor, a rod of the load sensor sequentially penetrates a web of the rectangular frame and a spring holder upward, and a coil spring is wound around the rod. A nut is screwed to the rod, and the nut tightens a bottom of a cup portion of the spring holder. The coil spring is sandwiched between a flange of the spring holder and the web and is compressed by tightening the nut.
Abstract:
This load cell attachment structure includes a male screw which is formed on a load sensing part of the load cell, a nut which attaches the load cell to the attachment plate by engaging with the male screw, and a wave washer which is disposed between the attachment plate and the nut.
Abstract:
There is disclosed a passenger's weight measurement device for a vehicle seat, capable of suppressing generation of an initial load. The passenger's weight measurement device includes an upper rail disposed to be movable back and forth on a lower rail fixed to a vehicle floor; a load sensor fixed on the upper rail; and a frame disposed on the load sensor and below a vehicle seat, wherein a rod extends from the load sensor to penetrate the frame and to be inserted into an insertion hole formed in a center of a leaf spring, the leaf spring is curved into an angle shape to separate the center of the leaf spring from the frame, a nut is engaged with the rod on the leaf spring, and both hems of the leaf spring abut on the frame in a state that the leaf spring is fastened by the nut.
Abstract:
A vehicle seat includes a load sensor for measuring a load applied from an occupant and a seat cushion frame, wherein the seat cushion frame comprises right and left side frames extending in a front-and-rear direction, the load sensor is attached to the seat cushion frame, and a concave portion is formed in at least one of the right and left side frames at a position opposite to the load sensor.
Abstract:
An upper rail is movable in a rear and front direction with respect to a lower rail fixed to a vehicle floor. A load sensor is fixed to an upper surface of the upper rail 4, and a rectangular frame 30 is attached onto the load sensor. A rod of the load sensor sequentially penetrates a web of the rectangular frame, a plain washer and a spring holder upward, and a coil spring is wound around the rod. A bush is fitted to an edge of a hole of the plain washer, and a step difference is formed between an upper surface of the plain washer and the bush. A nut is screwed to the rod, and the nut tightens a bottom of a cup portion of the spring holder. In such a way, the coil spring is sandwiched between the spring holder and the web and is compressed, and an end portion of the coil spring engages with the step difference.
Abstract:
An upper rail is movable in a rear and front direction with respect to a lower rail fixed to a vehicle floor. A load sensor is fixed to an upper surface of the upper rail, and a rectangular frame is attached onto the load sensor. A rod of the load sensor penetrates a web of the rectangular frame, a washer and a spring holder, and a coil spring is wound around the rod. A bush is fitted to an edge of a hole of the washer, and a step is formed between an upper surface of the washer and the bush. A nut is screwed to the rod and tightens a bottom of a cup portion of the spring holder. The coil spring is sandwiched between the spring holder and the web and is compressed, and an end portion of the coil spring engages with the step.
Abstract:
The submarine phenomenon can be prevented and the accuracy of a passenger's weight measurement is improved. A vehicle seat includes a pair of fixed lower rails fixed on the floor of a passenger compartment, a pair of movable upper rails that are engaged with the fixed lower rails so as to be slidable in a front-and-rear direction with respect to each of the fixed lower rails, a sub frame which is disposed at an upper side of the movable upper rails, load sensors and that lie between the sub frame and the movable upper rails, brackets and which are disposed so as to erect them on each of the movable upper rails, and a submarine pipe 11 which is crossed between the brackets. The submarine pipe is disposed to be slidable in a left-and-right direction with respect to the right bracket.
Abstract:
The submarine phenomenon can be prevented and the accuracy of a passenger's weight measurement is improved.A vehicle seat 1 comprises a pair of fixed lower rails 3 fixed on the floor of a passenger compartment, a pair of movable upper rails 4 which are engaged with the fixed lower rails 3 so as to be slidable in a front-and-rear direction with respect to each of the fixed lower rails 3, a sub frame 110 which is disposed at an upper side of the movable upper rails 4, load sensors 50, 60, 70, and 80 which lie between the sub frame 110 and the movable upper rails 4, brackets 8 and 9 which are disposed so as to erect them on each of the movable upper rails 4, and a submarine pipe 11 which is crossed between the brackets 8 and 9. The submarine pipe 11 is disposed to be slidable in a left-and-right direction with respect to the right bracket 9.