Abstract:
An apparatus for interfacing with a multimedia communication link comprises a half-duplex translation layer circuit operating in half-duplex and a full-duplex link layer circuit to communicate over a control bus of the multimedia communication link in full duplex. The apparatus further comprises an arbitration circuit communicatively coupled between the half-duplex translation layer circuit and the full-duplex link layer circuit, the arbitration circuit to control data flow between the half-duplex translation layer circuit and the full-duplex link layer circuit. The arbitration circuit provides interface and signaling rules for transmitting packets from the half-duplex translation layer circuit to the full-duplex link layer circuit, receiving packets via the full-duplex link layer circuit at the half-duplex translation layer circuit, and resolving conflict arising due to bidirectional data flow at the arbitration logic.
Abstract:
A system communicating over a full duplex control channel of a multimedia communication link by using synchronization signals that may also function as a logical link command. Synchronization indicators are exchanged between two communicating devices for maintaining synchronization of a logical link. At least two different types of synchronization signals may be sent between the two devices as synchronization indicators. A first synchronization signal is used by default to maintain synchronization of a logical link. A second synchronization signal is used in place of the first synchronization signal to maintain synchronization of the logical link. The second synchronization signal may be used to imply a virtual link command to indicate that a device is ready to receive data or has successfully received data over the virtual link.
Abstract:
A multimedia system for data communications. A source device communicates data over a full duplex control channel of a multimedia communication link. The source device has a first link layer that retries unsuccessful data communications over the full duplex control channel until a first maximum retry limit of the first link layer is reached. A sink device communicates data over the full duplex control channel of the multimedia communication link. The sink device has a second link layer that retries unsuccessful data communications over the full duplex control channel until a second maximum retry limit of the second link layer is reached, where the second maximum retry limit is different than the first maximum retry limit.
Abstract:
A mechanism for facilitating dynamic phase detection with high jitter tolerance for images of media streams is described. In one embodiment, a method includes calculating stability optimization of an image of a media stream based on a plurality of pixels of two or more consecutive frames relating to a plurality of phases of the image, calculating sharpness optimization of the image, and selecting a best phase of the plurality of phases based on the stability and sharpness optimization of the image. The best phase may represent the image such that the image is displayed in a manner in accordance with human vision perceptions.
Abstract:
A source device communicates multimedia data to a sink device over a multimedia channel of a multimedia link. The source device comprises an interface to a full duplex control channel of the multimedia link. The source device also comprises first arbitration logic to control transfer of control data with the sink device via the full duplex control channel. The first arbitration logic ignores requests to receive inbound control data from the sink device while the source device is transmitting outbound control data to the sink device. The sink device, on the other hand, comprises second arbitration logic to control transfer of control data with the source device via the full duplex control channel. The second arbitration logic stops transmitting outbound control data via the full duplex control channel responsive to receiving a request to receive incoming control data from the source device.
Abstract:
A multimedia system for data communications. A source device communicates over a full duplex control channel of a multimedia communication link using time domain multiplexed (TDM) frames having n time slots per frame. The source device allocates a first time slot position to a virtual channel for data transmission by the source device over the full duplex control channel. A sink device communicates over the full duplex control channel of the multimedia communication link. The sink device allocates a second time slot position to the virtual channel for data transmission by the sink device over the full duplex control channel. A timing of the second time slot position is offset from a timing of the first time slot position by substantially n/2 time slots.
Abstract:
An apparatus for interfacing with a multimedia communication link comprises a half-duplex translation layer circuit operating in half-duplex and a full-duplex link layer circuit to communicate over a control bus of the multimedia communication link in full duplex. The apparatus further comprises an arbitration circuit communicatively coupled between the half-duplex translation layer circuit and the full-duplex link layer circuit, the arbitration circuit to control data flow between the half-duplex translation layer circuit and the full-duplex link layer circuit. The arbitration circuit provides interface and signaling rules for transmitting packets from the half-duplex translation layer circuit to the full-duplex link layer circuit, receiving packets via the full-duplex link layer circuit at the half-duplex translation layer circuit, and resolving conflict arising due to bidirectional data flow at the arbitration logic.
Abstract:
A mechanism for facilitating dynamic phase detection with high jitter tolerance for images of media streams is described. In one embodiment, a method includes calculating stability optimization of an image of a media stream based on a plurality of pixels of two or more consecutive frames relating to a plurality of phases of the image, calculating sharpness optimization of the image, and selecting a best phase of the plurality of phases based on the stability and sharpness optimization of the image. The best phase may represent the image such that the image is displayed in a manner in accordance with human vision perceptions.
Abstract:
A mechanism for facilitating dynamic phase detection with high jitter tolerance for images of media streams is described. In one embodiment, a method includes calculating stability optimization of an image of a media stream based on a plurality of pixels of two or more consecutive frames relating to a plurality of phases of the image, calculating sharpness optimization of the image, and selecting a best phase of the plurality of phases based on the stability and sharpness optimization of the image. The best phase may represent the image such that the image is displayed in a manner in accordance with human vision perceptions.
Abstract:
Techniques and mechanisms for communicating sideband information in a data frame including video data. In an embodiment, a data frame is exchanged between two device via a hardware interconnect which is compatible with physical layer requirements of an interface specification. The interface specification identifies a data frame format comprising a total of X consecutive horizontal lines of vertical blanking data and a total of Y consecutive horizontal lines of data including video data. In another embodiment, vertical blanking data of the data frame includes only (X−N) consecutive horizontal lines of data. Active data of the data frame includes N horizontal lines of data including sideband data, and Y additional horizontal lines of data including video data.