Abstract:
A system communicating over a full duplex control channel of a multimedia communication link by using synchronization signals that may also function as a logical link command. Synchronization indicators are exchanged between two communicating devices for maintaining synchronization of a logical link. At least two different types of synchronization signals may be sent between the two devices as synchronization indicators. A first synchronization signal is used by default to maintain synchronization of a logical link. A second synchronization signal is used in place of the first synchronization signal to maintain synchronization of the logical link. The second synchronization signal may be used to imply a virtual link command to indicate that a device is ready to receive data or has successfully received data over the virtual link.
Abstract:
In one embodiment, a source device and sink device communicate with one another via a multimedia link. The multimedia link includes a cable and a plug. The cable includes one or more data lines, power lines, ground lines or control bus lines. The plug includes a plurality of pins each connected to the one or more lines included in the cable. The plug also includes a ground plane and a power plane, wherein a ground pin of the plug connects the ground plane to the ground line of the cable of the multimedia link and a power pin of the plug connects the ground plane to the power line of the cable. In one example, the ground plane and power plane are placed within a threshold distance of one another, such that the power line connected to the power plane via the power pin behaves as a signal return path.
Abstract:
Embodiments of the present disclosure are related to identifying the orientation of a multimedia link connected between a source device and a sink device. A sink device includes a plurality of pins that are configured to interface with a plurality of pins of the multimedia link. The sink device identifies based on the values of one or more pins of the plurality of pins of the sink device whether the multimedia link is connected to the sink device. Further, the sink device determines an orientation of the multimedia link connected to the sink device. The multimedia link can be in one of two orientations, straight or flipped. The sink device may communicate the orientation of the multimedia link to the source device. The source device may perform lane mapping based on whether the multimedia link is in the straight or flipped orientation.
Abstract:
In one embodiment, a source device and sink device communicate with one another via a multimedia link. The multimedia link includes a cable and a plug. The cable includes one or more data lines, power lines, ground lines or control bus lines. The plug includes a plurality of pins each connected to the one or more lines included in the cable. The plug also includes a ground plane and a power plane, wherein a ground pin of the plug connects the ground plane to the ground line of the cable of the multimedia link and a power pin of the plug connects the ground plane to the power line of the cable. In one example, the ground plane and power plane are placed within a threshold distance of one another, such that the power line connected to the power plane via the power pin behaves as a signal return path.