Abstract:
A digital frequency synthesizer provides absolute phase lock and shorter settling time through the use of a digital filter with a phase and frequency path. Control logic control disables the frequency path during the frequency acquisition and sets a wide bandwidth. After frequency acquisition, a counter with digital phase information is reset using the input clock signal to bring the output phase closer to lock with the input signal and the control logic enables the phase path in the digital loop filter to achieve phase lock with a narrower bandwidth than the initial bandwidth.
Abstract:
A fractional-N divider supplies a divided clock signal. An adjusted divided clock signal is generated in a digital-to-time converter circuit having a delay linearly proportional to digital quantization errors of the fractional-N divider. The adjusted divided clock signal is generated based on first and second capacitors charging to a predetermined level. The charging of the first and second capacitors is interleaved in alternate periods of the divided clock. The charging of each capacitor with a current corresponding to respective digital quantization errors is interleaved with charging with a fixed current. A first edge of a first pulse of the adjusted divided clock signal is generated in response to the first capacitor charging to a predetermined voltage and a first edge of a next pulse of the adjusted divided clock signal is generated in response to the second capacitor charging to the predetermined voltage.
Abstract:
A fractional-N divider supplies a divided clock signal. An adjusted divided clock signal is generated in a digital-to-time converter circuit having a delay linearly proportional to digital quantization errors of the fractional-N divider. The adjusted divided clock signal is generated based on first and second capacitors charging to a predetermined level. The charging of the first and second capacitors is interleaved in alternate periods of the divided clock. The charging of each capacitor with a current corresponding to respective digital quantization errors is interleaved with charging with a fixed current. A first edge of a first pulse of the adjusted divided clock signal is generated in response to the first capacitor charging to a predetermined voltage and a first edge of a next pulse of the adjusted divided clock signal is generated in response to the second capacitor charging to the predetermined voltage.