摘要:
A method and system for improving processing performance by using activity factor headroom provides improved performance while meeting power management constraints in a processing system. The method and system estimate the power consumption of the system from a model that relates measured activities at a present operating point to power consumption for any available operating point of one or more processors in the system. The method then chooses the operating point(s) with the highest performance among the available operating points that will still meet budgetary constraints or specific thresholds of power consumption. The budgetary constraints or specific thresholds may be dynamically adjusted, and the method will update the operating point(s) to maintain safe operation and maximize performance. The method provides the best performance for the executing workload while ensuring safe operation.
摘要:
Processing system performance is improved while meeting power management constraints in a processing system by using activity factor headroom estimation. The method and system estimate the power consumption of the system from a model that relates measured activities at a present operating point to power consumption for any available operating point of one or more processors in the system. The method then chooses the operating point(s) with the highest performance among the available operating points that will still meet budgetary constraints or specific thresholds of power consumption. The budgetary constraints or specific thresholds may be dynamically adjusted, and the method will update the operating point(s) to maintain safe operation and maximize performance. The method provides the best performance for the executing workload while ensuring safe operation.
摘要:
A power management system schedules the voltage and frequency of processors in a data processing system based on two criteria. The first criterion is a prediction of the performance that the work currently running on the processor will experience at the different frequencies that are available. The second criterion is a system-wide constraint on the total power budget allocated to processors. Based on these criteria, low-level code sets the frequency and voltage of the processors in the system to match what the operating system is currently running on them.
摘要:
A flexible current and voltage sensor provides ease of installation of a current sensor, and optionally a voltage sensor in application such as AC branch circuit wire measurements, which may require installation in dense wiring conditions and/or in live panels where insulating gloves must be worn. The sensor includes at least one flexible ferromagnetic strip that is affixed to a current sensing device at a first end. The second end is secured to the other side of the current sensing device or to another flexible ferromagnetic strip extending from the other side of the current sensing device to form a loop providing a closed pathway for magnetic flux. A voltage sensor may be provided by metal foil affixed to the inside of the flexible ferromagnetic strip. A clamp body, which can be a spring loaded handle operated clamp or a locking fastener, can secure the ferromagnetic strip around the wire.
摘要:
A flexible current and voltage sensor provides ease of installation of a current sensor, and optionally a voltage sensor in application such as AC branch circuit wire measurements, which may require installation in dense wiring conditions and/or in live panels where insulating gloves must be worn. The sensor includes at least one flexible ferromagnetic strip that is affixed to a current sensing device at a first end. The second end is secured to the other side of the current sensing device or to another flexible ferromagnetic strip extending from the other side of the current sensing device to form a loop providing a closed pathway for magnetic flux. A voltage sensor may be provided by metal foil affixed to the inside of the flexible ferromagnetic strip. A clamp body, which can be a spring loaded handle operated clamp or a locking fastener, can secure the ferromagnetic strip around the wire.
摘要:
A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.
摘要:
A method of measurement using a detachable current and voltage sensor provides an isolated and convenient technique for to measuring current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.
摘要:
A method of measurement using a detachable current and voltage sensor provides an isolated and convenient technique for to measuring current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.
摘要:
A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.
摘要:
Calibration of a non-contact current sensor provides improved accuracy for measuring current conducted through a conductor such as an AC branch circuit wire. In a calibration mode, a predetermined current is injected through a voltage sensing conductor integrated in the non-contact current sensor. The magnitude of the magnetic field is measured using a sensing element of the non-contact current sensor. Then, when operating in measurement mode, a current conducted in a wire passing through the non-contact current sensor is determined by correcting the output of the non-contact current sensor using the result of the measurement made in the calibration mode. The voltage sensing conductor is used to provide an indication of the magnitude and/or the phase of the electrostatic potential on the wire. The calibration current may be a DC current, and calibration may be performed while the conductor is carrying an AC current.