Abstract:
A method and system for controlling TTI bundling in a wireless communication system that includes a base station configured to serve UEs over an air interface, where each UE has a maximum transmit power for air interface transmission, where the UEs include a first class of UEs and a second class of UEs, and where the maximum transmit power of the UEs of the second class is higher than the maximum transmit power of the UEs of the first class. The base station detects a capacity constraint on the air interface, such a threshold high air interface load, and the base station responds by operating in a mode in which the base station differentially controls application of TTI bundling as between the first class of UEs and the second class of UEs, based on the second class of UEs having higher maximum transmit power than the first class of UEs.
Abstract:
A method and system for managing capacity of a base station's air interface. The base station identifies a served user equipment device (UE) based at least in part on the UE being located in an area of overlap between coverage of the base station and coverage of another base station. The base station then increases an order of modulation of air interface communication between the base station and the identified UE, so as to help free up some air interface capacity. Further, in view of the possible decrease in reliability of communication due to the increased order of modulation, the base station may also invoke use of Coordinated Multipoint Communication (CoMP) for the UE to help improve air interface communication between the base station and the UE.
Abstract:
A method and system for managing voice codec rate used for voice communication by a user equipment device (UE). In accordance with the disclosure, the voice codec rate will be established (e.g., set or modified) based on a consideration of what type or types of non-voice communication the UE will engage in or is engaging in concurrently with the voice communication.
Abstract:
A method and system for controlling wireless service of a user equipment device (UE) by an access node. The access node serves the UE with uplink carrier-aggregation over a connection that encompasses encompassing multiple uplink channels including a primary uplink channel (uplink PCell) and a secondary uplink channel (uplink SCell). Further, the access node dynamically sets a channel-quality threshold (e.g., an RSRP threshold) applicable to control when to deconfigure the uplink SCell from service of the UE, with the dynamically setting of the channel-quality threshold including iteratively adjusting the channel-quality threshold based on uplink spectral efficiency of the access node. And the access node applies the dynamically set channel-quality threshold to control when to deconfigure the uplink SCell from service of the UE.
Abstract:
When a user equipment device (UE) is served with standalone connectivity by a first access node on a first carrier, the first access node could detect a trigger for transitioning the UE from the standalone connectivity to dual connectivity. In response to at least the trigger, the first access node could then (i) transition the UE from the first carrier to a second carrier selected based on the second carrier being lower in frequency than the first carrier, so as to help facilitate quality communication in the dual connectivity service, and then (ii) transition the UE from the standalone connectivity to the dual connectivity.
Abstract:
A base station or an associated control entity determines when base station's air interface is threshold highly loaded or is predicted to be threshold highly loaded, and the base station responsively reduces the number of transmit antennas that the base station uses. Further, the base station or associated control entity could determine when the base station's air interface is no longer actually or predicted to be threshold highly loaded, and the base station could responsively increase the number of transmit antennas that the base station uses, such as by reverting to use a default number of antennas. Reducing the number of transmit antennas that the base station uses when its air interface is threshold highly loaded may help to increase air-interface capacity by reducing resource consumption from transmission of reference signals associated with the transmit antennas.
Abstract:
When a user equipment device (UE) is served with standalone connectivity by a first access node on a first carrier, the first access node could detect a trigger for transitioning the UE from the standalone connectivity to dual connectivity. In response to at least the trigger, the first access node could then (i) transition the UE from the first carrier to a second carrier selected based on the second carrier being lower in frequency than the first carrier, so as to help facilitate quality communication in the dual connectivity service, and then (ii) transition the UE from the standalone connectivity to the dual connectivity.
Abstract:
Disclosed are methods and systems to facilitate handover of a UE away from a primary carrier of a base station, despite a primary carrier having a channel quality that is at or above a channel quality threshold of the primary carrier. In particular, a wireless communication system may serve the UE with carrier aggregation service using (i) a first carrier as a primary carrier for the UE and (ii) a second carrier as a secondary carrier for the UE. During the serving, while a channel quality of the primary carrier is at or above a first threshold quality, the system may make a determination that a channel quality of the secondary carrier is below a second threshold quality. In response to at least making the determination, the system may carry out a handover of the UE from the primary carrier of the first base station to another carrier.
Abstract:
A method and system for controlling wireless service of a user equipment device (UE) by an access node. The access node serves the UE with uplink carrier-aggregation over a connection that encompasses encompassing multiple uplink channels including a primary uplink channel (uplink PCell) and a secondary uplink channel (uplink SCell). Further, the access node dynamically sets a channel-quality threshold (e.g., an RSRP threshold) applicable to control when to deconfigure the uplink SCell from service of the UE, with the dynamically setting of the channel-quality threshold including iteratively adjusting the channel-quality threshold based on uplink spectral efficiency of the access node. And the access node applies the dynamically set channel-quality threshold to control when to deconfigure the uplink SCell from service of the UE.
Abstract:
A method and system for proactively reconfiguring communication to a user equipment device (UE) in anticipation the UE experiencing a coverage-throughput reduction when the UE is receiving streaming media. An example method includes (i) predicting, when the UE is receiving streaming media, that the UE is going to experience the coverage-throughput reduction and (ii) based at least in part on the predicting, proactively increasing a quality-of-service (QoS) level of a bearer through which the UE is receiving the streaming media, the proactively increasing occurring before the UE experiences the coverage-throughput reduction so that the QoS level is increased by when the UE experiences the coverage-throughput reduction.