Abstract:
A method and system for controlling wireless service of a user equipment device (UE) by an access node. The access node serves the UE with uplink carrier-aggregation over a connection that encompasses encompassing multiple uplink channels including a primary uplink channel (uplink PCell) and a secondary uplink channel (uplink SCell). Further, the access node dynamically sets a channel-quality threshold (e.g., an RSRP threshold) applicable to control when to deconfigure the uplink SCell from service of the UE, with the dynamically setting of the channel-quality threshold including iteratively adjusting the channel-quality threshold based on uplink spectral efficiency of the access node. And the access node applies the dynamically set channel-quality threshold to control when to deconfigure the uplink SCell from service of the UE.
Abstract:
When a user equipment device (UE) is served with standalone connectivity by a first access node on a first carrier, the first access node could detect a trigger for transitioning the UE from the standalone connectivity to dual connectivity. In response to at least the trigger, the first access node could then (i) transition the UE from the first carrier to a second carrier selected based on the second carrier being lower in frequency than the first carrier, so as to help facilitate quality communication in the dual connectivity service, and then (ii) transition the UE from the standalone connectivity to the dual connectivity.
Abstract:
A base station or an associated control entity determines when base station's air interface is threshold highly loaded or is predicted to be threshold highly loaded, and the base station responsively reduces the number of transmit antennas that the base station uses. Further, the base station or associated control entity could determine when the base station's air interface is no longer actually or predicted to be threshold highly loaded, and the base station could responsively increase the number of transmit antennas that the base station uses, such as by reverting to use a default number of antennas. Reducing the number of transmit antennas that the base station uses when its air interface is threshold highly loaded may help to increase air-interface capacity by reducing resource consumption from transmission of reference signals associated with the transmit antennas.
Abstract:
Disclosed are methods and systems to facilitate management of carriers to help ensure QoS for single-carrier UEs. In particular, a base station may serve one or more first user equipment devices (UEs) on just a first carrier. While doing so, the base station may determine that each of the one or more first UEs being served on just the first carrier is receiving threshold low quality of service from the base station on the first carrier. Responsive to this determining, the base station may (i) select one or more second UEs based on the one or more second UEs being served by the base station on both the first carrier and one or more other carriers and (ii) discontinue serving each selected second UE on the first carrier while continuing to serve each selected second UE on one or more other carriers.
Abstract:
When a user equipment device (UE) is served with standalone connectivity by a first access node on a first carrier, the first access node could detect a trigger for transitioning the UE from the standalone connectivity to dual connectivity. In response to at least the trigger, the first access node could then (i) transition the UE from the first carrier to a second carrier selected based on the second carrier being lower in frequency than the first carrier, so as to help facilitate quality communication in the dual connectivity service, and then (ii) transition the UE from the standalone connectivity to the dual connectivity.
Abstract:
Disclosed herein is a method and corresponding apparatus to help manage wireless communication between a base station and a device served by the base. In accordance with the disclosure, when a base station transitions from serving the device on just a first carrier to serving the device on a combination of the first carrier and a second carrier, the base station will responsively take action to improve downlink communication to the device on the first carrier. In particular, the base station will respond to the occurrence of that transition by starting to beamform downlink transmission to the device on the first carrier.
Abstract:
A method and system for controlling wireless communication over an air interface between a base station and a user equipment device (UE) served by the base station. In examples, the base station is configured to use a particular modulation and coding scheme (MCS) to transmit downlink control signals over the air interface to the UE without the base station beamforming the downlink control signals to the UE. Responsive to the base station determining that the UE is experiencing threshold poor RF conditions on the air interface, the base station reconfigures itself to beamform downlink control signals to the UE. And, given that the base station is reconfigured to beamform downlink control signals to the UE, the base station further reconfigures itself to use a higher-order MCS to transmit downlink control signals to the UE.
Abstract:
Disclosed herein is a method and corresponding apparatus to help manage wireless communication between a base station and a device served by the base. In accordance with the disclosure, when a base station transitions from serving the device on just a first carrier to serving the device on a combination of the first carrier and a second carrier, the base station will responsively take action to improve downlink communication to the device on the first carrier. In particular, the base station will respond to the occurrence of that transition by starting to beamform downlink transmission to the device on the first carrier.
Abstract:
Methods and systems are disclosed that support the aggregation of acknowledgement messages and control messages. Advantageously, acknowledgement and negative acknowledgement indications for multiple client nodes are combined into a single aggregated message which is broadcast or multicast to the multiple client nodes. Based on unique identifiers assigned to each client node, client nodes are grouped such that the aggregated acknowledgement messages can be efficiently encoded to conserve both network capacity when they are transmitted, as well as processing capacity when they are parsed by the client nodes. If code division multiple access (CDMA) technology is used, the aggregated acknowledgment message can be transmitted without CDMA spreading to effectively broadcast or multicast it to multiple client nodes. A similar technique can be employed for the efficient broadcast or multicast of aggregated control messages.
Abstract:
Disclosed are methods and systems to facilitate handover of a UE away from a primary carrier of a base station, despite a primary carrier having a channel quality that is at or above a channel quality threshold of the primary carrier. In particular, a wireless communication system may serve the UE with carrier aggregation service using (i) a first carrier as a primary carrier for the UE and (ii) a second carrier as a secondary carrier for the UE. During the serving, while a channel quality of the primary carrier is at or above a first threshold quality, the system may make a determination that a channel quality of the secondary carrier is below a second threshold quality. In response to at least making the determination, the system may carry out a handover of the UE from the primary carrier of the first base station to another carrier.