摘要:
The present invention provides a liquid crystal display (“LCD”), a method of manufacturing the same, and a method of repairing the same capable of obtaining a wide viewing angle and improving a success ratio of repair. The LCD includes a gate line, a first data line intersecting the gate line, a thin film transistor (“TFT”) connected with the gate line and the first data line, a pixel electrode connected with the TFT, a first conductive pattern partially overlapping with a first end of the pixel electrode, a second conductive pattern partially overlapping with a second end of the pixel electrode, and a storage capacitor, wherein at least one of the first conductive pattern and the second conductive pattern partially overlaps with the first data line adjacent to the first end of the pixel electrode and a second data line adjacent to the second end of the pixel electrode, respectively.
摘要:
A touch sensible display device includes a display panel. The display panel includes a plurality of pixels, a plurality of image data lines transferring image data signals to the plurality of pixels and each positioned between two neighboring pixels, a plurality of image scanning lines transferring image scanning signals to the plurality of pixels, a plurality of first sense data lines transferring first sense data signals and each positioned between two neighboring pixels without the image data line interposed therebetween, and a plurality of first sensing units connected with the plurality of first sense data lines and sensing a touch to the display panel.
摘要:
A liquid crystal display that is subject to pixel-high defects due to manufacturing anomalies is provided with programmable repair means for each pixel electrode. In one embodiment, a transistor-array substrate is provided with plural gate lines that are separated from each other by a first interval, plural data lines that are insulated from the gate lines while crossing the gate lines, and separated from each other by a second interval larger than the first interval, thereby defining plural pixel areas. Each pixel area has a corresponding pixel unit comprising a switching device, pixel electrode, and repair electrode. The repair electrode branches from a neighboring gate line and extends such that the repair electrode is in overlapping spaced-apart relation with the pixel electrode and selectively connectable to the pixel electrode. Accordingly, a pixel where a high pixel defect occurs can be repaired by selective connection with the repair electrode, thereby improving display quality of the liquid crystal display.
摘要:
The present invention provides a liquid crystal display (“LCD”), a method of manufacturing the same, and a method of repairing the same capable of obtaining a wide viewing angle and improving a success ratio of repair. The LCD includes a gate line, a first data line intersecting the gate line, a thin film transistor (“TFT”) connected with the gate line and the first data line, a pixel electrode connected with the TFT, a first conductive pattern partially overlapping with a first end of the pixel electrode, a second conductive pattern partially overlapping with a second end of the pixel electrode, and a storage capacitor, wherein at least one of the first conductive pattern and the second conductive pattern partially overlaps with the first data line adjacent to the first end of the pixel electrode and a second data line adjacent to the second end of the pixel electrode, respectively.
摘要:
A liquid crystal display that is subject to pixel-high defects due to manufacturing anomalies is provided with programmable repair means for each pixel electrode. In one embodiment, a transistor-array substrate is provided with plural gate lines that are separated from each other by a first interval, plural data lines that are insulated from the gate lines while crossing the gate lines, and separated from each other by a second interval larger than the first interval, thereby defining plural pixel areas. Each pixel area has a corresponding pixel unit comprising a switching device, pixel electrode, and repair electrode. The repair electrode branches from a neighboring gate line and extends such that the repair electrode is in overlapping spaced-apart relation with the pixel electrode and selectively connectable to the pixel electrode. Accordingly, a pixel where a high pixel defect occurs can be repaired by selective connection with the repair electrode, thereby improving display quality of the liquid crystal display.
摘要:
A gate drive circuit of a display device includes a plurality of stages, each stage being coupled to at least one other stage. A current stage among the stages includes a gate section, a carry section, a buffer section, and a reset section. The gate section generates a current gate signal and the carry section generates a current carry signal. The buffer section receives a previous carry signal from a previous stage, and then turns on the gate section and the carry section. The reset section receives a next carry signal from next stages, and then turns off the gate section and the carry section. As the current stage is reset in response to the next carry signal, the function of the gate drive circuit is increased.
摘要:
A scan driver sequentially activates scan lines of a display apparatus having m-number of scan lines. The scan driver includes a pull-up driving section and a pull-down driving section. The pull-up driving section includes a pull-up transistor that is electrically connected to an ith scan line to activate the ith scan line to be in a high level state. The pull-down driving section includes a pull-down transistor that is electrically connected to the ith scan line to inactivate the ith scan line to be in a low level state when (i+1)th scan line is activated. A gate electrode of the pull-up transistor is electrically separated from the ith scan line. The above ‘m’ is an integer greater than 1, and ‘i’ is an integer no greater than ‘m’. Therefore, display defects may be minimized, and detecting a cause of the display defect may be simplified to enhance productivity.
摘要:
A display device including a plurality of pixel electrodes arranged in a matrix including rows and columns and a plurality switching elements coupled with the pixel electrodes; a plurality of gate lines coupled with the switching elements and extending in a row direction, at least two gate lines assigned to a row; and a plurality of data lines coupled with the switching elements and extending in a column direction, a data line assigned to at least two columns, wherein each of the pixel electrodes has a first side and a second side that is farther from a data line than the first side, and the switching elements are disposed near the second sides of the pixel electrodes.
摘要:
A display device including a plurality of pixel electrodes arranged in a matrix including rows and columns and a plurality switching elements coupled with the pixel electrodes; a plurality of gate lines coupled with the switching elements and extending in a row direction, at least two gate lines assigned to a row; and a plurality of data lines coupled with the switching elements and extending in a column direction, a data line assigned to at least two columns, wherein each of the pixel electrodes has a first side and a second side that is farther from a data line than the first side, and the switching elements are disposed near the second sides of the pixel electrodes.
摘要:
A gate driving circuit includes cascaded stages, each including a pull-up part, a carry part, a pull-up driving part, a holding part and an inverter. The pull-up part pulls up a gate voltage to an input clock. The carry part pulls up a carry voltage to the input clock. The pull-up driving part is connected to a control terminal (Q-node) common to the carry part and the pull-up part, and receives a previous carry voltage from a previous stage to turn on the pull-up part and the carry part. The holding part holds the gate voltage at an off-voltage, and the inverter controls at least one of turning on the holding part and turning off the holding part based on an inverter clock. A high level of the inverter clock in a given horizontal period (1H) temporally precedes a high level of the input clock by a predetermined time interval.