Abstract:
The present description relates to an olefin block copolymer having excellences in elasticity and heat resistance and its preparation method. The olefin block copolymer includes a plurality of blocks or segments, each of which includes an ethylene or propylene repeating unit and an α-olefin repeating unit at different weight fractions. The olefin block copolymer has a density of 0.85 to 0.92 g/cm3, and density X (g/cm3) and TMA (Thermal Mechanical Analysis) value Y (° C.) satisfy a defined relationship.
Abstract translation:本发明涉及具有优异的弹性和耐热性的烯烃嵌段共聚物及其制备方法。 烯烃嵌段共聚物包括多个嵌段或链段,其各自包括不同重量分数的乙烯或丙烯重复单元和α-烯烃重复单元。 烯烃嵌段共聚物的密度为0.85〜0.92g / cm 3,密度X(g / cm 3)和TMA(热机械分析)值Y(℃)满足规定的关系。
Abstract:
The present description relates to an olefin block copolymer having excellences in elasticity, heat resistance, and processability. The olefin block copolymer includes a plurality of blocks or segments, each of which includes an ethylene or propylene repeating unit and an α-olefin repeating unit at different weight fractions. In the olefin block copolymer, a first derivative of the number Y of short-chain branches (SCBs) per 1,000 carbon atoms of each polymer chain contained in the block copolymer with respect to the molecular weight X of the polymer chains is a negative or positive number of −1.5×10−4 or greater; and the first derivative is from −1.0×10−4 to 1.0×10−4 in the region corresponding to the median of the molecular weight X or above.
Abstract:
The present invention relates to a catalyst composition and a process for preparing an olefin polymer using the same. More specifically, the present invention relates to a novel catalyst composition comprising at least two types of catalysts and a process for preparing an olefin polymer having excellent heat resistance using the same. The present invention can provide an olefin polymer having excellent activity and high heat resistance, and also can control the values of density, heat resistance and melt index (MI) of the olefin polymer.
Abstract:
A liquid crystal display according to an exemplary embodiment of the present invention includes a first substrate, a gate electrode formed on the first substrate, a gate insulating layer formed on the gate electrode, a semiconductor formed on the gate insulating layer, a source electrode and a drain electrode formed on the semiconductor, a second substrate that faces the first substrate, and a light blocking member formed on the second substrate, and the semiconductor includes a metal oxide semiconductor and the light blocking member is not formed in a region corresponding to at least a portion of the semiconductor.
Abstract:
The present invention relates to a display device and a manufacturing method thereof. A display device according to an exemplary embodiment of the present invention includes a substrate including a first surface and a second surface, a first line disposed on the first surface and made of a transparent metal oxide semiconductor, and a first semiconductor disposed on the first surface and made of the transparent metal oxide semiconductor.
Abstract:
A touch display substrate includes a first data line, a first gate line, a first pixel electrode, a second gate line, a second pixel electrode, a senor data line and a first sensor electrode. The first data line extends along a first direction. The first gate line extends along a second direction. The first pixel electrode is electrically connected to the first data line and the first gate line. The second gate line is substantially parallel with the first gate line. The second pixel electrode is adjacent to the first pixel electrode and electrically connected to the first data line and the second gate line. The sensor data line is adjacent to the second pixel electrode and substantially parallel to the first data line. The first sensor electrode is electrically connected to the sensor data line.
Abstract:
A device and corresponding method of fabrication thereof are disclosed, where the device provides a contact for semiconductor and display devices, the device including a substrate, a first wiring line assembly formed on the substrate, an under-layer formed on the first wiring line assembly, an organic insulating layer formed on the under-layer such that the organic insulating layer covers the under-layer, a pattern on the organic insulating layer for contact holes to expose the under-layer, etched contact holes formed in the under-layer in correspondence with the pattern such that the underlying first wiring line assembly is exposed to the outside, a cured organic insulating layer formed on the under-layer, and a second wiring line assembly formed on the organic insulating layer such that the second wiring line assembly is connected to the first wiring line assembly through the etched contact holes, and the corresponding method of fabrication including forming a first wiring line assembly on a substrate, forming an under-layer on the first wiring line assembly, forming an organic insulating layer such that the organic insulating layer covers the under-layer patterning the organic insulating layer to thereby form contact holes exposing the under-layer, etching the under-layer exposed through the contact holes such that the underlying first wiring line assembly is exposed to the outside, curing the organic insulating layer, and forming a second wiring line assembly on the organic insulating layer such that the second wiring line assembly is connected to the first wiring line assembly through the contact holes.
Abstract:
A display device includes driving apparatus having first, second, third, and fourth gate drivers. The first and second gate drivers are connected to gate lines and are positioned on one side of the display device side by side. The third and fourth gate drivers are connected to gate lines and are positioned on the other side of the display device side by side. The first and third gate drivers apply the gate signal to the same gate line, and the second and fourth gate drivers apply the gate signal to the same gate line.
Abstract:
A device and corresponding method of fabrication thereof are disclosed, where the device provides a contact for semiconductor and display devices, the device including a substrate, a first wiring line assembly formed on the substrate, an under-layer formed on the first wiring line assembly, an organic insulating layer formed on the under-layer such that the organic insulating layer covers the under-layer, a pattern on the organic insulating layer for contact holes to expose the under-layer, etched contact holes formed in the under-layer in correspondence with the pattern such that the underlying first wiring line assembly is exposed to the outside, a cured organic insulating layer formed on the under-layer, and a second wiring line assembly formed on the organic insulating layer such that the second wiring line assembly is connected to the first wiring line assembly through the etched contact holes; and the corresponding method of fabrication including forming a first wiring line assembly on a substrate, forming an under-layer on the first wiring line assembly, forming an organic insulating layer such that the organic insulating layer covers the under-layer, patterning the organic insulating layer to thereby form contact holes exposing the under-layer, etching the under-layer exposed through the contact holes such that the underlying first wiring line assembly is exposed to the outside, curing the organic insulating layer, and forming a second wiring line assembly on the organic insulating layer such that the second wiring line assembly is connected to the first wiring line assembly through the contact holes.
Abstract:
A method of manufacturing a thin film transistor array panel is provided, which includes: forming a gate line on a substrate; depositing a gate insulating layer and a semiconductor layer in sequence on the gate line; depositing a lower conductive film and an upper conductive film on the semiconductor layer; photo-etching the upper conductive film, the lower conductive film, and the semiconductor layer; depositing a passivation layer; photo-etching the passivation layer to expose first and second portions of the upper conductive film; removing the first and the second portions of the upper conductive film to expose first and second portions of the lower conductive film; forming a pixel electrode and a pair of redundant electrodes on the first and the second portions of the lower conductive film, respectively, the redundant electrodes exposing a part of the second portion of the lower conductive film; removing the exposed part of the second portion of the lower conductive film to expose a portion of the semiconductor layer; and forming a columnar spacer on the exposed portion of the semiconductor layer.