Abstract:
A delta-sigma modulator architecture with idle tone suppression based on injecting an out-of-band signal includes: modulator input circuitry to provide a modulator input signal; modulator loop circuitry to quantize the modulator input signal to generate a modulator output signal at an oversampling frequency, and to provide a feedback signal. Digital filtering circuitry filters the modulator output signal to provide a digital output signal at a data rate frequency related to the oversampling frequency by a defined oversampling ratio. Out-of-band (OoB) signal generator circuitry injects a deterministic OoB injection signal at a defined OoB frequency outside of a target frequency band. The modulator input circuitry combines the analog input signal, the feedback signal, and the OoB injection signal into the modulator input signal. The digital filtering circuitry filters the OoB injection signal. The OoB injection signal can be selectively defined to suppress idle tones generated in the modulator loop circuitry.
Abstract:
An ADC includes a comparator to provide a comparator output responsive to an input voltage of the ADC and a DAC output voltage; a SAR circuit including a SAR that stores an n-bit digital code that is initialized at a beginning of a conversion phase of the ADC, where the SAR circuit is to update the digital code responsive to the comparator output, where an ADC output is responsive to the digital code at an end of the conversion phase; and a DAC to provide the DAC output voltage responsive to the digital code and a reference voltage. The DAC includes an m-bit CDAC and an (n−m)-bit RDAC to provide an intermediate voltage responsive to the n−m least-significant bits of the digital code and the reference voltage. The CDAC provides the DAC output voltage responsive to the m most-significant bits of the digital code, the intermediate voltage, and reference voltage.
Abstract:
A delta-sigma modulator architecture with idle tone suppression based on injecting an out-of-band signal includes: modulator input circuitry to provide a modulator input signal; modulator loop circuitry to quantize the modulator input signal to generate a modulator output signal at an oversampling frequency, and to provide a feedback signal. Digital filtering circuitry filters the modulator output signal to provide a digital output signal at a data rate frequency related to the oversampling frequency by a defined oversampling ratio. Out-of-band (OoB) signal generator circuitry injects a deterministic OoB injection signal at a defined OoB frequency outside of a target frequency band. The modulator input circuitry combines the analog input signal, the feedback signal, and the OoB injection signal into the modulator input signal. The digital filtering circuitry filters the OoB injection signal. The OoB injection signal can be selectively defined to suppress idle tones generated in the modulator loop circuitry.
Abstract:
An analog-to-digital converter (ADC) device includes a delta-sigma modulator having at least one integrator and a quantizer configured to receive an output of the at least one integrator. The delta-sigma modulator also includes digital-to-analog converter (DAC) capacitor bank, a sampling capacitor bank, and a pre-charge capacitor bank, each selectively coupled to an input node of the at least one integrator. The delta-sigma modulator also includes a pre-charge signal generator coupled to the pre-charge capacitor bank. The pre-charge signal generator is configured to generate a pre-charge signal to charge the pre-charge capacitor bank based at least in part on an output code of the quantizer.
Abstract:
A dual delta-sigma modulator includes a first modulator, a second modulator, and a shared amplifier coupled to the first and second modulators. The first modulator includes an integrator configured to generate a first modulator output signal. The second modulator includes a second integrator configured to generate a second modulator output signal. The shared amplifier is configured to assist the first integrator integrating a difference between a first analog input signal and a first modulator output signal from the first modulator during a first period of time and to assist the second integrator integrate a difference between a second analog input signal and a second modulator output signal from the second modulator during a second period of time.
Abstract:
An operational amplifier includes an output stage, an input stage, a first auxiliary amplifier, and a second auxiliary amplifier. The output stage includes a first output transistor and a second output transistor. The input stage is configured to drive the output stage. The first auxiliary amplifier is coupled to an output of the input stage and to an input of the first output transistor. The first auxiliary amplifier is configured to bias the first output transistor for class AB operation and to isolate the input stage from a bias voltage applied to the first output transistor. The second auxiliary amplifier is coupled to the output of the input stage and to an input of the second output transistor. The second auxiliary amplifier is configured to bias the second output transistor for class AB operation, and to isolate the input stage from a bias voltage applied to the second output transistor.
Abstract:
A dual delta-sigma modulator includes a first modulator, a second modulator, and a shared amplifier coupled to the first and second modulators. The first modulator includes an integrator configured to generate a first modulator output signal. The second modulator includes a second integrator configured to generate a second modulator output signal. The shared amplifier is configured to assist the first integrator integrating a difference between a first analog input signal and a first modulator output signal from the first modulator during a first period of time and to assist the second integrator integrate a difference between a second analog input signal and a second modulator output signal from the second modulator during a second period of time.
Abstract:
A precharge circuit comprises a gain amplifier, a comparator, a reservoir capacitor, a switch, a current source, and a switching network. The gain amplifier has a gain G1 and receives an input voltage Vrefp. The gain amplifier outputs an amplified voltage G1Vrefp to the comparator, which compares G1Vrefp to a voltage across the reservoir capacitor. The comparator outputs a control signal for the switch based on the comparison. The switch couples the current source to the reservoir capacitor. The current from the current source charges the reservoir capacitor. The switching network couples the reservoir capacitor to an output of the precharge circuit during a first operating mode and provides the input voltage Vrefp to the output during a second operating mode.
Abstract:
A dual delta-sigma modulator includes a first modulator, a second modulator, and a shared amplifier coupled to the first and second modulators. The first modulator includes an integrator configured to generate a first modulator output signal. The second modulator includes a second integrator configured to generate a second modulator output signal. The shared amplifier is configured to assist the first integrator integrating a difference between a first analog input signal and a first modulator output signal from the first modulator during a first period of time and to assist the second integrator integrate a difference between a second analog input signal and a second modulator output signal from the second modulator during a second period of time.
Abstract:
A dual delta-sigma modulator includes a first modulator, a second modulator, and a shared amplifier coupled to the first and second modulators. The first modulator includes an integrator configured to generate a first modulator output signal. The second modulator includes a second integrator configured to generate a second modulator output signal. The shared amplifier is configured to assist the first integrator integrating a difference between a first analog input signal and a first modulator output signal from the first modulator during a first period of time and to assist the second integrator integrate a difference between a second analog input signal and a second modulator output signal from the second modulator during a second period of time.