Abstract:
A transistor device includes a field plate that extends from a source runner layer and/or a source contact layer. The field plate can be coplanar with and/or below a gate runner layer. The gate runner layer is routed away from a region directly above the gate metal layer by a gate bridge, such that the field plate can extend directly above the gate metal layer without being interfered by the gate runner layer. Coplanar with the source runner layer or the source contact layer, the field plate is positioned close to the channel region, which helps reduce its parasitic capacitance. By vertically overlapping the metal gate layer and the field plate, the disclosed HEMT device may achieve significant size efficiency without additional routings.
Abstract:
A transistor device includes a field plate that extends from a source runner layer and/or a source contact layer. The field plate can be coplanar with and/or below a gate runner layer. The gate runner layer is routed away from a region directly above the gate metal layer by a gate bridge, such that the field plate can extend directly above the gate metal layer without being interfered by the gate runner layer. Coplanar with the source runner layer or the source contact layer, the field plate is positioned close to the channel region, which helps reduce its parasitic capacitance. By vertically overlapping the metal gate layer and the field plate, the disclosed HEMT device may achieve significant size efficiency without additional routings.
Abstract:
A transistor device includes a field plate extending from a source contact layer and defining an opening above a gate metal layer. Coplanar with the source contact layer, the field plate is positioned close to the channel region, which helps reduce its parasitic capacitance. Meanwhile, the opening allows a gate runner layer above the field plate to access and connect to the gate metal layer, which helps reduce the resistance of the gate structure. By vertically overlapping the metal gate layer, the field plate, and the gate runner layer, the transistor device may achieve fast switching performance without incurring any size penalty.
Abstract:
A transistor device includes a field plate extending from a source contact layer and defining an opening above a gate metal layer. Coplanar with the source contact layer, the field plate is positioned close to the channel region, which helps reduce its parasitic capacitance. Meanwhile, the opening allows a gate runner layer above the field plate to access and connect to the gate metal layer, which helps reduce the resistance of the gate structure. By vertically overlapping the metal gate layer, the field plate, and the gate runner layer, the transistor device may achieve fast switching performance without incurring any size penalty.
Abstract:
An integrated circuit (IC) includes a lower group III-N layer having a first composition over a substrate, and an upper group III-N layer having a different second composition over the lower group III-N layer. A gate electrode of a High Electron Mobility Transistor (HEMT) is located over the upper group III-N layer. First and second resistor contacts make a conductive connection to the lower group III-N layer. An unbiased group III-N cover layer is located on the upper group III-N layer in a resistor area including a high Rs 2-DEG resistor, where the unbiased group III-N cover layer is positioned between the first and second contacts.
Abstract:
A transistor device includes a field plate that extends from a source runner layer and/or a source contact layer. The field plate can be coplanar with and/or below a gate runner layer. The gate runner layer is routed away from a region directly above the gate metal layer by a gate bridge, such that the field plate can extend directly above the gate metal layer without being interfered by the gate runner layer. Coplanar with the source runner layer or the source contact layer, the field plate is positioned close to the channel region, which helps reduce its parasitic capacitance. By vertically overlapping the metal gate layer and the field plate, the disclosed HEMT device may achieve significant size efficiency without additional routings.
Abstract:
A transistor device includes a field plate extending from a source contact layer and defining an opening above a gate metal layer. Coplanar with the source contact layer, the field plate is positioned close to the channel region, which helps reduce its parasitic capacitance. Meanwhile, the opening allows a gate runner layer above the field plate to access and connect to the gate metal layer, which helps reduce the resistance of the gate structure. By vertically overlapping the metal gate layer, the field plate, and the gate runner layer, the transistor device may achieve fast switching performance without incurring any size penalty.
Abstract:
A method of fabricating a photodiode array having different photodiode structures includes providing a semiconductor substrate having first and second diode areas including a bottom substrate portion doped with a first doping type, an intrinsic layer, and a top silicon layer doped with a second doping type. The second diode areas are implanted with the second doping type. A dopant concentration in the surface of the second diode areas is at least three times higher than in the first diode areas. The top silicon layer is thermally oxidized to form a thermal silicon oxide layer to provide a bottom Anti-Reflective Coating (ARC) layer. The second diode areas grow thermal silicon oxide thicker as compared to the first diode areas. A top ARC layer is deposited on the bottom ARC layer. First PDs are provided in the first diode areas and second PDs provided in the second diode areas.
Abstract:
An integrated circuit (IC) includes a lower group III-N layer having a first composition over a substrate, and an upper group III-N layer having a different second composition over the lower group III-N layer. A gate electrode of a High Electron Mobility Transistor (HEMT) is located over the upper group III-N layer. First and second resistor contacts make a conductive connection to the lower group III-N layer. An unbiased group III-N cover layer is located on the upper group III-N layer in a resistor area including a high Rs 2-DEG resistor, where the unbiased group III-N cover layer is positioned between the first and second contacts.
Abstract:
A transistor device includes a field plate that extends from a source runner layer and/or a source contact layer. The field plate can be coplanar with and/or below a gate runner layer. The gate runner layer is routed away from a region directly above the gate metal layer by a gate bridge, such that the field plate can extend directly above the gate metal layer without being interfered by the gate runner layer. Coplanar with the source runner layer or the source contact layer, the field plate is positioned close to the channel region, which helps reduce its parasitic capacitance. By vertically overlapping the metal gate layer and the field plate, the disclosed HEMT device may achieve significant size efficiency without additional routings.