Abstract:
This invention is an electronic circuit with a low power retention mode. A single integrated circuit includes a circuit module and a droop switch circuit supplied by a voltage regulator. In a normal mode a PMOS source-drain channel connects the voltage regulator power to the circuit module power input or isolates them dependent upon a power switch input. In a low power mode a second PMOS connected between the first PMOS gate and output diode connects the first PMOS. This supplied the circuit module from the voltage regulator power as reduced in voltage by a diode forward bias drop. This lower voltage should be sufficient for flip-flops in the circuit module to retain their state while not guaranteeing logic operation. There may be a plurality of chain connected droop switch each powering a corresponding circuit module.
Abstract:
A power supply for an electronic circuit enables a low effort retention mode. During a normal mode a circuit module is supplied a first voltage sufficient for a controlled circuit to operate. During the low effort retention mode the circuit module is supplied with a second voltage lower than the first voltage. The second voltage is sufficient for flop-flops to retain their state but not sufficient to guarantee proper circuit operation. The second voltage is produced by a voltage drop (droop) from the first voltage. The preferred embodiment includes a System On Chip and one external voltage regulator and an on-chip droop circuit for each circuit module.
Abstract:
A power supply for an electronic circuit enables a low effort retention mode. During a normal mode a circuit module is supplied a first voltage sufficient for a controlled circuit to operate. During the low effort retention mode the circuit module is supplied with a second voltage lower than the first voltage. The second voltage is sufficient for flop-flops to retain their state but not sufficient to guarantee proper circuit operation. The second voltage is produced by a voltage drop (droop) from the first voltage. The preferred embodiment includes a System On Chip and one external voltage regulator and an on-chip droop circuit for each circuit module.
Abstract:
This invention is an electronic circuit with a low power retention mode. A single integrated circuit includes a circuit module and a droop switch circuit supplied by a voltage regulator. In a normal mode a PMOS source-drain channel connects the voltage regulator power to the circuit module power input or isolates them dependent upon a power switch input. In a low power mode a second PMOS connected between the first PMOS gate and output diode connects the first PMOS. This supplied the circuit module from the voltage regulator power as reduced in voltage by a diode forward bias drop. This lower voltage should be sufficient for flip-flops in the circuit module to retain their state while not guaranteeing logic operation. There may be a plurality of chain connected droop switch each powering a corresponding circuit module.
Abstract:
This invention is an electronic circuit with a low power retention mode. A single integrated circuit includes a circuit module and a droop switch circuit supplied by a voltage regulator. In a normal mode a PMOS source-drain channel connects the voltage regulator power to the circuit module power input or isolates them dependent upon a power switch input. In a low power mode a second PMOS connected between the first PMOS gate and output diode connects the first PMOS. This supplied the circuit module from the voltage regulator power as reduced in voltage by a diode forward bias drop. This lower voltage should be sufficient for flip-flops in the circuit module to retain their state while not guaranteeing logic operation. There may be a plurality of chain connected droop switch each powering a corresponding circuit module.