Abstract:
Circuits, systems and methods are provided. A circuit includes a subsystem, an interface, and a debugger. The interface includes power processing and management (PPM) circuitry coupled to the subsystem, and arbitration logic coupled to the PPM circuitry. In operation, the debugger issues a debug request to the arbitration logic to perform a debug operation on the subsystem, and, in response to the debug request, the arbitration logic provides an interrupt associated with the subsystem to the PPM circuitry. The PPM circuitry, in response to the interrupt and a determination that the subsystem is OFF, powers on the subsystem and provides a notification to the arbitration logic indicating that the subsystem is ON. The PPM circuitry also receives a notification from the arbitration logic that the debug operation related to the debug request is complete, and powers off the subsystem in response to that notification.
Abstract:
An integrated circuit includes: a clock domain having a clock domain input; and clock management logic coupled to the clock domain. The clock management logic includes: a PLL having a reference clock input and a PLL clock output; a divider having a divider input and a divider output, the divider input coupled to the PLL clock output; and bypass logic having a first clock input, a second clock input, a bypass control input, and a bypass logic output, the first clock input coupled to divider output, the second clock input coupled to the reference clock input, and the bypass logic output coupled to the clock domain input. The bypass logic selectively bypasses the PLL and divider responsive to a bypass control signal triggered by a reset signal. The reset signal also triggers a reset control signal delayed relative to the bypass control signal.
Abstract:
An embedded megamodule and an embedded CPU enable power-saving through a combination of hardware and software. The CPU configures the power-down controller (PDC) logic within megamodule and can software trigger a low-power state of logic modules during processor IDLE periods. To wake from this power-down state, a system event is asserted to the CPU through the module interrupt controller. Thus the entry into a low-power state is software-driven during periods of inactivity and power restoration is on system activity that demands the attention of the CPU.
Abstract:
A method of adaptive voltage scaling is shown incorporating a lookup table holding manufacturing characterization data in conjunction with one or more precision analog temperature sensors used for correcting for temperature effects.
Abstract:
An integrated circuit comprises a set of processor cores, wherein each processor core of the set of processor cores includes BIST logic circuitry and multiple memory blocks coupled to the BIST logic circuitry. Each processor core further includes multiple power control circuitry, where each power control circuitry of the multiple power control circuitry is coupled to a respective processor core of the set of processor cores, multiple isolation circuitry, where each isolation circuitry of the multiple isolation circuitry is coupled to a respective processor core of the set of processor cores, a built-in-self repair (BISR) controller coupled to the each of the set of processor cores, each of the multiple power control circuitry, and each of the multiple isolation circuitry, and a safety controller coupled to the BISR controller, the multiple power control circuitry, and to the multiple isolation circuitry.
Abstract:
In described examples, an SoC includes at least two voltage domains interconnected with a communication bus. Detection logic in a first voltage domain determines when a voltage error occurs in a second voltage domain and isolates communication via the communication bus when a voltage error or a timing error is detected.
Abstract:
A power supply for an electronic circuit enables a low effort retention mode. During a normal mode a circuit module is supplied a first voltage sufficient for a controlled circuit to operate. During the low effort retention mode the circuit module is supplied with a second voltage lower than the first voltage. The second voltage is sufficient for flop-flops to retain their state but not sufficient to guarantee proper circuit operation. The second voltage is produced by a voltage drop (droop) from the first voltage. The preferred embodiment includes a System On Chip and one external voltage regulator and an on-chip droop circuit for each circuit module.
Abstract:
In described examples, an SoC includes at least two voltage domains interconnected with a communication bus. Detection logic in a first voltage domain determines when a voltage error occurs in a second voltage domain and isolates communication via the communication bus when a voltage error or a timing error is detected.
Abstract:
An integrated circuit includes: a clock domain having a clock domain input; and clock management logic coupled to the clock domain. The clock management logic includes: a PLL having a reference clock input and a PLL clock output; a divider having a divider input and a divider output, the divider input coupled to the PLL clock output; and bypass logic having a first clock input, a second clock input, a bypass control input, and a bypass logic output, the first clock input coupled to divider output, the second clock input coupled to the reference clock input, and the bypass logic output coupled to the clock domain input. The bypass logic selectively bypasses the PLL and divider responsive to a bypass control signal triggered by a reset signal. The reset signal also triggers a reset control signal delayed relative to the bypass control signal.
Abstract:
This invention is an electronic circuit with a low power retention mode. A single integrated circuit includes a circuit module and a droop switch circuit supplied by a voltage regulator. In a normal mode a PMOS source-drain channel connects the voltage regulator power to the circuit module power input or isolates them dependent upon a power switch input. In a low power mode a second PMOS connected between the first PMOS gate and output diode connects the first PMOS. This supplied the circuit module from the voltage regulator power as reduced in voltage by a diode forward bias drop. This lower voltage should be sufficient for flip-flops in the circuit module to retain their state while not guaranteeing logic operation. There may be a plurality of chain connected droop switch each powering a corresponding circuit module.