Abstract:
Described examples a three-dimensional printer includes a vat having a transparent bottom, the vat configured to contain a photo-polymerizing resin and a lift plate movably positioned within the vat. The three-dimensional printer also includes an optical device configured to project a pattern of light through the transparent bottom. The optical device includes a light source configured to provide light at a light source output and a light integrator configured to provide divergent light at a light integrator output responsive to the light at the light source output. The optical device also includes projection optics configured to project projection output light at an optics output through the transparent bottom responsive to a modulated light at the optics input and a spatial light modulator configured to provide the modulated light responsive to the divergent light.
Abstract:
Described examples include a device having a prism cube having a first side and a second side opposite the first side, the prism cube configured to: receive light comprising a first color light and a second color light, direct the first color light to the first side of the prism cube, and direct the second color light to the second side of the prism cube.
Abstract:
A projector system with a single imaging array has a low-etendue light source. The projector system includes a first optical path from the low-etendue light source to a plurality of optical conversion media having a plurality of emission wavelengths to provide display light with wavelengths longer than blue light. The projector system includes a second optical path from the optical conversion media to the imaging array. The projector system has a means of moving an excitation location on the optical conversion media in the first optical path. The projector system may include a blue LED, a diffuser region, or an optical conversion medium with a blue emission wavelength to provide blue display light. Light from the low-etendue light source is prevented from directly impinging on the imaging array.
Abstract:
A system for displaying a high resolution video image utilizing multiple spatial light modulators includes at least one illumination source configured to provide illumination to multiple spatial light modulators; a video data image processor coupled to receive video image data at a first visual resolution of X by Y pixels; and multiple spatial light modulators each having an image resolution lower than the first visual resolution, each configured to project an image sub-frame onto a focal plane using an image projection system; wherein the image projection system is configured to project a first sub-frame image of a first color portion while simultaneously projecting at least a second sub-frame image of a second color portion onto the focal plane, and the first and second sub-frame images are offset from one another, so that when viewed together a viewed image has at least the first visual resolution. Methods are disclosed.
Abstract:
Described examples include an optical device, having a light source with a light source output and a light integrator having a light integrator input and a light integrator output, the light integrator input optically coupled to the light source output, and the light integrator configured to provide divergent light at the light integrator output responsive to the light at the light source output. The optical device also has projection optics with an optics input and an optics output, the projection optics configured to project output light at the optics output responsive to modulated light at the optics input, in which a focal point of the optics input matches a divergence of the modulated light and a spatial light modulator optically coupled between the light integrator output and the optics input, the spatial light modulator configured to provide the modulated light responsive to the divergent light.
Abstract:
A projector system with a single imaging array has a low-etendue light source. The projector system includes a first optical path from the low-etendue light source to a plurality of optical conversion media having a plurality of emission wavelengths to provide display light with wavelengths longer than blue light. The projector system includes a second optical path from the optical conversion media to the imaging array. The projector system has a means of moving an excitation location on the optical conversion media in the first optical path. The projector system may include a blue LED, a diffuser region, or an optical conversion medium with a blue emission wavelength to provide blue display light. Light from the low-etendue light source is prevented from directly impinging on the imaging array.
Abstract:
Described examples include a device having a prism cube having a first side and a second side opposite the first side, the prism cube configured to: receive light comprising a first color light and a second color light, direct the first color light to the first side of the prism cube, and direct the second color light to the second side of the prism cube.
Abstract:
In described examples, a projector includes a light source to produce first light of a first color. The projector also includes a phosphor to selectively receive the first light and produce second light of a second color in response to the first light. The projector also includes a dichroic mirror to pass a portion of the second light to produce a third light of a third color. The dichroic mirror reflects a portion of the second light as fourth light of a fourth color.
Abstract:
In described examples, a projector includes a light source to produce first light of a first color. The projector also includes a phosphor to selectively receive the first light and produce second light of a second color in response to the first light. The projector also includes a dichroic mirror to pass a portion of the second light to produce a third light of a third color. The dichroic mirror reflects a portion of the second light as fourth light of a fourth color.
Abstract:
A system for displaying a high resolution video image utilizing multiple spatial light modulators includes at least one illumination source configured to provide illumination to multiple spatial light modulators; a video data image processor coupled to receive video image data at a first visual resolution of X by Y pixels; and multiple spatial light modulators each having an image resolution lower than the first visual resolution, each configured to project an image sub-frame onto a focal plane using an image projection system; wherein the image projection system is configured to project a first sub-frame image of a first color portion while simultaneously projecting at least a second sub-frame image of a second color portion onto the focal plane, and the first and second sub-frame images are offset from one another, so that when viewed together a viewed image has at least the first visual resolution. Methods are disclosed.