Abstract:
The present invention relates to a device (16) for determining the attitude of a carrier comprising a GNSS receiver apt to receive GNSS signals from one or a plurality of antennas (14) arranged in known positions;
the determination device (16) comprising:
a movement generation module (22) configured for generating a movement of an apparent phase center according to a control law; a control module (23) configured for determining the control law; a determination module (24) configured for determining an absolute orientation of a vector of interest from at least one observable value supplied by the GNSS receiver (12) and from the control law, and for determining at least one component of the attitude of the carrier from the absolute orientation of the vector of interest.
Abstract:
An electronic portion of a CRPA antenna of an anti-jamming device for a GNSS receiver, including M elementary signal inputs, for each input, a bandpass filter bank which is configured to break down each elementary signal received by this input at a frequency Fe, into P sub-bands to obtain P sub-sampled signals at a frequency Fe/P, a calculational component which is configured to apply in parallel anti-jamming processing at the frequency Fe/P to the sub-sampled signals, to obtain a cleaned sub-sampled signal, and a summation component which is configured to receive all the cleaned sub-sampled signals and to form, from these sub-sampled signals a resulting corresponding cleaned signal at the frequency Fe.
Abstract:
A consolidation method implementing: a first sensor able to determine a computed position {circumflex over (x)}(1) of the aircraft, a characterization of the positioning error and a horizontal protection level HPL(1), a second sensor, with a different design and with a design level equivalent to the first sensor, able to determine a second position {circumflex over (x)}(2) of the aircraft and a characterization of the positioning error of the second position {circumflex over (x)}(2), and comprising the steps: a. estimating a horizontal deviation between the computed position {circumflex over (x)}(1) and the second position {circumflex over (x)}(2), b. comparing the horizontal deviation with a detection threshold, c. if the horizontal deviation is below the detection threshold, computing an additional horizontal protection level HPL(MON) of the computed position {circumflex over (x)}(1), d. estimating a consolidated horizontal protection level HPL(CON), e. comparing the consolidated horizontal protection level HPL(CON) and a horizontal alert limit HAL, f. if the consolidated horizontal protection level HPL(CON) is less than the horizontal alert limit HAL, horizontally confirming the computed position {circumflex over (x)}(1).
Abstract:
This detection method is carried out after a phase for acquiring a navigation signal during a convergence phase and comprises at least one of the following steps: —determining a plurality of pilot channel periodic correlations and a plurality of data channel periodic correlations, and determining a first value as a function of these periodic correlations; —determining a plurality of pilot channel partial correlations, and determining a second value as a function of these partial correlations; —determining a plurality of shifted pilot channel correlations, and determining a third value as a function of these shifted pilot channel correlations. The convergence phase further comprises the step for determining a wrong synchronization when at least one of the first value, the second value, and the third value exceeds a predetermined threshold.
Abstract:
A GNSS signal multipath detection device (16) for a GNSS receiver (12) on-board a carrier further comprising one or a plurality of antennas (14) and comprising:
a movement generation module (22) configured for generating a movement of an apparent phase center according to a control law; a control module (23) configured for determining the control law; a prediction module (24) configured for determining a prediction of an observable value provided by the GNSS receiver (12), from the control law and directions of arrival of the GNSS signals; an anomaly detection module (25) configured for detecting multipaths by comparing an observable value coming from the GNSS receiver (12) with the corresponding prediction thereof.
Abstract:
A method for detecting masking of one or more satellites by an obstacle for a GNSS receiver on board a movable carrier, including receiving, for each one of M satellites, a code pseudo-distance measurement and a variation of carrier pseudo-distances, computing of a definite position of the receiver and a computed position of each satellite, detecting a masking of at least one satellite on the basis of the following operations: computing, at a computation instant and for each satellite, of a computed pseudo-distance and a pseudo-distance reconstructed at a previous time, and detecting masking of at least one satellite by analyzing a magnitude, called residue, computed by applying a least squares algorithm.
Abstract:
A system comprises: onboard a first craft, called host craft, a triplet of antennas comprising a transmitting and receiving antenna and two transmitting antennas, a transmission chain that can be successively coupled to each antenna of the triplet of antennas by a radiofrequency switch, a reception chain that can be coupled to the transmitting and receiving antenna, and a processing device intended to determine a relative angular position between, on the one hand, the host craft and, on the other hand, a plurality of spacecraft, called companion craft, from measurements of path differences performed and transmitted by the companion craft; onboard the companion craft, a transmitting and receiving antenna, a transmission chain and a reception chain coupled to the transmitting and receiving antenna and a measurement device intended to measure path differences between three signals originating from the three antennas of the triplet of antennas of the host craft.